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Abstract
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precipitation, and census block-group level measures of “green” and “brown” employ-
ment shares. Holding politician positions fixed within a district, we find that Demo-
cratic vote shares increase with exogenous changes in local climate and green transition
employment. We embed these estimates into a model of political competition, includ-
ing both direct and demand-driven effects of shocks on candidate supply of climate
policy positions. Incorporating these estimates into 2022-2050 projections of climate
change and green employment transition, we find that voting for the Democratic Party
increases, while both parties move slightly to the right on climate policy. Under worst-
case climate projections and current mitigation trajectories, our estimates indicate that
the probability the House passes a carbon-pricing bill is 9 percentage points higher in
2050 than in 2020.
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1 Introduction

Climate change is recognized as having large effects on economic well-being. A

substantial and growing literature shows effects of temperature, weather, and extreme

environmental events on mortality, GDP, health, crime, schooling, job quality, and civil

strife (Dell, Jones and Olken, 2012; Carleton et al., 2022; Burke et al., 2023). Scientists

and economists have proposed many policies, from carbon pricing to green technology

subsidies, that could potentially slow global warming (Hahn et al., 2024). Yet many

of these policies have not been widely implemented, or have been passed and subse-

quently rejected by voters in democratic elections (Doyle, McEachern and MacGregor,

2015; Rowan, 2023). Climate adaptation also remains limited (Burke et al., 2024).

It has become increasingly clear that understanding voting and endogenous policy-

setting is important for successfully tackling climate change in democratic countries

(Dechezleprêtre et al., 2022). Politics, rather than just technology, appears to be a

fundamental barrier to climate action.1 But there is surprisingly little research on

how climate change affects democratic politics, and most projections of future impacts

overlook political economy considerations.

With this motivation, our paper focuses on the political economy of climate change.

We empirically document the effects of weather shocks and mitigation-related employ-

ment changes on partisan voting and political competition over environmental policy

in the U.S. Specifically, we use a new panel of precinct-level voting data to estimate

how extreme temperature and precipitation shocks, as well as employment in “green”

and “brown” jobs, affect vote shares. We then combine these within-district estimates

with new data on candidate positions on environmental issues to build and estimate a

demand and supply system of electoral competition over climate policy at the congres-

sional district level. Using this framework, we assess the effects of projected climate-

change scenarios on electoral politics and congressional policy-making for the years

2022-2050.

Analyzing the political economy of climate change presents several complex econo-

metric challenges. It is difficult to identify the drivers of voter demand for climate

action and to quantify how much this demand matters in equilibrium. The absence of

strong climate policy may reflect low voter demand, potentially due to limited aware-

ness, misinformation, or uncertainty about the costs of climate change. Alternatively,

1Some scholarship has even questioned whether democratic institutions may be suitable to tackle such
a complex, forward-looking task given their many veto points. In the words of Lazar and Wallace (2025)
“Governments have been slow to respond to climate change, slow to prevent further damage to our atmo-
sphere, and slow to prepare for what is coming. Democratic governments, it is sometimes said, are worst of
all at these tasks.” (p.135)
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voters may fear the economic burden of transitioning to a low-carbon society. Low

demand may also stem from increasing ideological and partisan polarization, which

exposes climate policy to the same gridlock affecting other policy domains.2 Fur-

thermore, from an econometric perspective, canonical models of electoral competition

imply that identifying voter demand parameters requires controlling for candidates’

policy positions, which themselves depend on expected voter behavior.

To address these challenges on the voter demand side, we estimate the relationship

between Democratic vote margins and extreme weather events, as measured by the

average number of days in which the temperature and precipitation were two standard

deviations above their historical averages. Because employment is central to the po-

litical economy of climate policy, we also examine how the local employment share in

green (low-carbon) and brown (high-carbon) industries affects vote choice. To identify

these effects, we construct a new 20-year panel dataset at the census block-group that

links voting, climate, and employment data. The granularity of within-congressional

district data together with its panel structure allows us to estimate highly-localized ef-

fects, while controlling for key confounders—such as candidate platforms or geographic

sorting—that often bias estimates relying on cross-sectional or more aggregated data.

We find that both climate shocks and employment composition significantly in-

fluence Democratic vote margins. Under our preferred specification, a one standard

deviation increase in extreme heat days (8.13 days) increases the Democratic margin

by 0.90 percentage points. A one standard deviation increase in extreme precipitation

(6.74 days) yields a smaller, less significant 0.35 percentage point increase. Regard-

ing employment, a one standard deviation rise in brown job share (1.75 percentage

points) decreases the Democratic margin by 0.62 percentage points, while a similar

increase in green jobs boosts it by 0.34 percentage points. Together, our results sug-

gest that weather and employment shocks have comparable effects on voter support

for Democratic candidates.

Our findings are robust to multiple specification checks, including alternative cli-

mate variable constructions, varying sets of fixed effects, spatial autocorrelation adjust-

ments, and a rich set of time-varying socio-demographic controls. To address potential

endogeneity in local job composition, we also implement a shift-share instrument fol-

lowing Borusyak, Hull and Jaravel (2022), yielding similar results. Finally, we show

that electoral effects are more pronounced in contests where environmental issues are

salient—such as Texas Railroad Commission races—supporting the interpretation that

these effects are driven by climate policy preferences rather than general partisan shifts.

2See Voorheis, McCarty and Shor (2015); Binder (2004).
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We then investigate how the same climate and employment shocks affect the en-

vironmental platforms adopted by political candidates, controlling for voter demand.

One reason long-term projections of climate politics are difficult is that the electoral

landscape itself evolves over time (Calvo, Pons and Shapiro, 2024), underscoring the

importance of modeling not just demand, but also the supply of climate policies. In-

deed, the absence of strong climate policy could reflect limited policy supply, even in

the presence of high voter demand. Climate issues may be “bad politics” given the

structure of electoral competition (e.g., due to the location of swing districts, donor or

concentrated electoral blocs) or other legislative incentives (e.g., bargaining over other

issues).3

For our supply-side analysis, we measure environmental policy platforms for both

winners and losers of congressional races using campaign websites and candidate sur-

veys collected by Longuet-Marx (2024). We show that these campaign-based environ-

mental policy positions strongly correlate with subsequent roll-call votes on climate

policy among elected officials, indicating that campaign platforms credibly signal true

policy preferences. While political science and political economy have long relied on

multidimensional scaling models to measure policy preferences of politicians (Poole and

Rosenthal (2011), Clinton, Jackman and Rivers (2004), McCarty, Poole and Rosenthal

(2016), Canen, Kendall and Trebbi (2021)), these approaches typically focus on incum-

bents, limiting their usefulness for studying electoral competition.4

To analyze supply-side behavior, we model electoral competition using a standard

probabilistic voting model, which provides the micro-foundations for a streamlined

supply-and-demand framework that we then estimate using GMM. Crucially, this

framework allows us to not only recover politically salient parameters—such as the

responsiveness of candidate platforms to expected vote shares—but to forecast politi-

cal equilibria under different climate change scenarios.

Our simulations reveal that, under the most extreme climate scenario, Democratic

vote shares increase. Yet, both parties shift slightly rightward on climate policy. De-

spite this, Democratic gains shift the composition of Congress enough that, by 2050,

the environmental roll-call position of the median legislator is significantly more pro-

3Relatively fewer studies have focused on the supply side of environmental policy by political parties, with
exceptions including List and Sturm (2006); Fredriksson, Wang and Mamun (2011); Aklin and Urpelainen
(2013); Béland and Boucher (2015); Gagliarducci, Paserman and Patacchini (2019); Kaplan, Spenkuch and
Yuan (2019). Our paper contributes to this literature by jointly modeling the interaction between voter
demand and policy supply in response to climate change.

4An exception is the method in Bonica (2013) to estimate ideal points from Political Action Committee
contributions. These ideal points can be calculated for all candidates in a race with available political
donations data.
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climate than today, raising the probability of voting for emissions pricing by 9 percent-

age points.5

While these forecasts are inherently uncertain, they offer a proof of concept for

quantitatively integrating political economy dynamics into long-run climate models

and economic estimates of carbon costs. Existing frameworks—particularly most Inte-

grated Assessment Models (IAMs)—typically link climate projections with economic

variables, but omit political feedback loops. In this sense, our approach aligns most

closely with Moore et al. (2022), work that incorporates reduced-form political feed-

backs, social conformity, and endogenous technology adoption into a climate model.

Their model imposes a threshold: climate policy only emerges when supporters out-

number opponents. In contrast, we adopt a structural political economy framework

that microfounds policy outcomes as the result of interactions between voter prefer-

ences and electoral competition in equilibrium.

Our paper contributes to several strands of literature. It broadly relates to a large

literature in economics and political science that has examined voter beliefs and pref-

erences regarding climate policy, including in response to climate and weather shocks,

which mostly focuses on survey evidence.6 In an influential contribution, Egan and

Mullin (2012) studies public opinion data from Pew Research Center as a response

to severe weather shocks. The authors show that “weather patterns have a significant

effect on people’s beliefs about the evidence for global warming.” Similar results are

also in Deryugina (2013) or Bergquist and Warshaw (2019). The evidence since then

has been more mixed (Egan and Mullin, 2017). Hilbig and Riaz (2024) present precise

zeros in estimating the effects of flooding in Germany, focusing on voter beliefs about

climate change and electoral support for the Green Party in federal elections. These

results appear in contrast with Hoffmann et al. (2022), that also study Green Parties

in Europe, but find positive effects.7

We speak more directly to a smaller literature that has analyzed actual voting be-

havior in response to climate shocks, with notable exceptions including Healy and Mal-

hotra (2010); Gasper and Reeves (2011); Stokes (2016); Pahontu (2020); Boomhower

(2024), and a handful of papers on Green Party support in Europe (Hoffmann et al.,

2022; Hilbig and Riaz, 2024). Both ballot initiatives and elections for state office and

5For reference, the 2009 Waxman-Markey bill to establish a national cap-and-trade system passed the
House with support from 83% of Democrats (211 of 255) and only 8 Republicans. The bill aimed to reduce
emissions by 83% by 2050. https://www.nytimes.com/2009/06/27/us/politics/27climate.html

6Psychologists, e.g. Li, Johnson and Zaval (2011) have also studied the relationship between unusual
temperature levels and beliefs in global warming.

7A recent paper looking at the effect of disasters on roll-call voting in the U.S. Congress finds that only
Democrats support more green legislation (Jud and Nguyen, 2024).
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legislatures have been studied, but not extensively, and mostly with a focus on the

demand side. Kahn and Matsusaka (1997) focuses on 16 ballot initiatives in Califor-

nia and estimates a county voter demand model, finding that environmental policy

appears a normal good for most voters. List and Sturm (2006) focuses on single-issue

environmental voters in U.S. gubernatorial elections. Stokes (2016) focuses on voter

backlash to costly environmental projects (NIMBY wind turbine location) in Canada,

whereas Urpelainen and Zhang (2022) shows that U.S. wind development raises Demo-

cratic vote share. Anderson, Marinescu and Shor (2023) study two failed carbon tax

referenda in Washington State in 2016 and 2018 and emphasize how ideology explains

much of the variation in voting outcomes, a result in sharp contrast with conclusions

in Kahn and Matsusaka (1997), where voter ideology is deemed less relevant. Closer

to our approach in terms of identifying variation of demand parameters, Hazlett and

Mildenberger (2020) focuses on the political consequences of wildfire exposure on vot-

ing, showing that wildfires increase support for costly pro-climate ballot initiatives by 5

to 6 percentage points for Californians living within 5 kilometers of a recent wildfire, but

find an asymmetry between Democratic and Republican localities. Boomhower (2024)

analyzes the electoral consequences of earthquakes induced by fracking activities in the

states of Oklahoma and Texas. The author focuses on environmental regulators, who

are elected (not appointed) in those states, and finds compelling causal evidence of

lower support for incumbents and higher turnout after a local shock.

Our paper also speaks to a new and growing literature on the structural estimation

of electoral demand models. Examples include Berry, Cox and Haile (2024), and equi-

librium systems of demand and supply such as Longuet-Marx (2024), Cox (2024) and

Iaryczower, Montero and Kim (2022). We complement these recent papers through a

specific focus on climate politics, which lends the structural model to novel quantita-

tive applications within the space of climate projections. By necessity, our equilibrium

model is also more streamlined and parsimonious than some of these alternatives, as

the model has to be solved forward in order to deliver quantitative projections from

2022 up to 2050.

These projections are also a new contribution of the paper. We provide a mi-

crofounded, quantitative approach for integrating political economy forces in climate

forecasting and potentially useful for extending Integrated Assessment Models (IAMs)

(Wiliam and Thompson, 2017; Geels, Berkhout and Van Vuuren, 2016). IAMs could

benefit from incorporating an explicitly endogenous policy-making process, and, as dis-

cussed above, our quantitative equilibrium model of climate politics can complement

the more reduced-form approaches that have been proposed in the climate science

literature.
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In the next section, we describe the data. We then present our demand estimates

using within-congressional district variation, along with heterogeneity and robustness

exercises. We then present our empirical model of political competition and endoge-

nous supply of environmental policy, and discuss identification and consistency with

the demand estimates. We then discuss results from the unified model of political

equilibrium, with both demand and supply estimates. Finally, we integrate climate

projection data with our structural estimates and project various future scenarios for

how climate change will change the composition and ideology of the U.S. House of

Representatives. The last section concludes.

2 Data

This section presents an overview of the main data sources used in the paper. All

the details of the data construction can be found in the Online Appendix A.

Electoral Voting Data: We use precinct-level voting data from Longuet-Marx

(2024). Precincts are the smallest level at which election results are reported in the

United States. A precinct has on average 1,200 registered voters, that is, on average,

60 times smaller than a county and 400 times smaller than a congressional district.

Since precinct boundaries change over time, in order to build a stable panel of geo-

graphic subunits of a congressional district, we assign all precinct votes to the 2010

census block-group level as our geographic unit (see Longuet-Marx (2024) for details).

Appendix Table B.1 present the state-years included in the analysis, and Appendix

Figure B.1 shows the block-group level vote shares for the 2020 election. Block-groups

have approximately the same population size as a precinct, and a census block-group

is a geographical unit used by the U.S. Census Bureau for collecting and reporting

demographic data. It is a subdivision of a census tract that is divided into census

blocks. We also obtain block-group-level demographics from the decennial U.S. Census

and the American Community Survey (ACS) for each election.

Climate: Our primary data for temperature and precipitation come from an up-

dated version of Schlenker and Roberts (2009), which reports daily minimum temper-

ature, maximum temperature, and total precipitation on each 2.5 mile × 2.5 mile grid

cell for the contiguous U.S. At the grid-cell level, we first construct weather measure-

ments as follows. First, we calculate the mean and standard deviation of average daily

temperature (maximum plus minimum temperature of the day divided by two) and
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precipitation for each calendar day of the year (January 1st, ... , December 31st) be-

tween 1959 and 1999. For each grid cell starting in 2000, a day’s average temperature

or precipitation is considered to be extreme if the day’s temperature or precipitation

exceeds the historical average for that day by two historical standard deviations. Ag-

gregating to the year level, we count the total number of days with extreme temperature

and precipitation for each year from 2000 to 2020. We also count the number of days

that exceeds a number of temperature and precipitation thresholds (e.g., 30 degrees

Celsius), total precipitation, and average temperature of the year, and various tem-

perature and precipitation bins indicating the number of days with temperature and

precipitation within a fixed range for each grid cell.

To aggregate grid cell-by-year-level data to census block-group and congressional

district level, we first match each census block’s centroid to the four closest grid cells.

The census block’s estimated days with extreme temperature, precipitation, and other

weather variables are the weighted average of the corresponding variables for the linked

grid cells, inversely weighted by the grid cell’s distance to the census block centroid. We

then aggregate block-group-level data to the block-group level by taking a population-

weighted average of block-group-level variables.

Candidate Positions on the Environment: We use the campaign environ-

mental policy positions calculated in Longuet-Marx (2024). These policy positions are

calculated by combining text data from candidate official websites obtained from the

Library of Congress with candidate survey information from Project Vote Smart, a non-

partisan organization that collects and distributes information on candidates running

for public office in the U.S. and whose data has long been used in the political science

and political economy literature (Ansolabehere, Snyder Jr and Stewart III, 2001).8

Candidate positions are estimated using a Bayesian item response model applied to

environment-related questions from the Vote Smart survey. These scores are then pre-

dicted for all candidates using the text from their campaign websites, thus ensuring

complete coverage across both winners and losers. We also compute environment-

specific ideal points based on roll-call votes for winning candidates in Congress, fol-

lowing Bateman and Lapinski (2016) and Kuziemko, Longuet-Marx and Naidu (2023),

restricting the estimation to bills that the Comparative Agendas Project (CAP) codes

as environmental. These ideal points measure the latent probability that a candidate

votes “yes” on a right-wing environmental bill, given the voting behavior of other leg-

islators. Appendix Figure B.2 shows that for winners, roll-call votes made in Congress

8See the Political Courage Test (formerly the National Political Awareness Test, NPAT)
https://www.votesmart.org/.
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on environmental bills are significantly correlated with the campaign platforms used

in our analysis.

Green and Brown Jobs: We construct a measure of employment in“green” jobs

for residents of a block-group by combining multiple data sources. We adopt a defi-

nition of green jobs based on the Bureau of Labor Statistics (BLS) Green Goods and

Services (GGS) survey, conducted in 2011. We use their classification of green NAICS

6-digit industries, which are those that produce goods or services that “benefit the

environment or conserve natural resources.” The BLS GGS also provides a share of

employment, within each of those industries, that is deemed to be devoted to green

activities. Ideally, we would observe each block-group b’s residents employment in

a NAICS 6-digit industry. Lacking such detailed industry employment information,

we approximate GreenEmpbt as detailed in Appendix section A.2 using data on: i)

block-group employment at NAICS 2-digit level from the Decennial Census and the

Census LEHD Origin-Destination Employment Statistics (LODES) Residence Area

Characteristics (RAC) dataset; ii) commuting flows from block-groups to counties at

a super-sector level from the LODES Origin-Destination (OD) dataset; iii) county em-

ployment by NAICS 6-digit from the County Business Patterns (CBP) and the BLS

Quarterly Census of Employment and Wages (QCEW). The logic behind this approx-

imation is that, while we know b’s residents’ NAICS 2-digit sector of employment, we

do not know which specific NAICS 6-digit industry employs them. Therefore we at-

tribute the industry based on commuting to jobs in potentially different counties and

those counties’ shares of green employment within each NAICS 2-digit industry. In

this process we employ a constrained imputation method analogous to Autor et al.

(2024), detailed in the Online Appendix A.9 This approach enables one to recover a

geographically detailed measure of green employment based on where individuals live

and vote, not just where they work.

The construction of the number of “brown” jobs in block-group b is analogous to

that of green jobs. We classify as brown jobs those easily recognizable as related to

oil and gas extraction, coal mining, and their support activities (OGC). The list of

eight 6-digit NAICS industries can be found in Appendix Section A.2, but they are all

within NAICS 2-digit industry 21 “Mining, Quarrying, and Oil and Gas Extraction”.

The geographic variation in our main variables is illustrated in the maps of Figure

1. There is clear evidence of spatial correlation in voting patterns, weather changes,

and employment changes. Note also that, while there is no clear clustering of green

9We especially thank David Dorn for suggestions and sharing details about the code.
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jobs in specific states or census regions, brown jobs are clearly concentrated in a few

areas—this discrepancy carries important political economy considerations.

Projections of Future Climate: Data for the weather projections come from the

NASA Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP) dataset.

The NEX-GDDP dataset contains daily average temperature and precipitation pro-

jections from 2015 up to year 2100 at the resolution of 25km × 25km (0.25 × 0.25

degrees in latitude × longitude) grids coming from different climate models of the 6th

generation of the Coupled Model Intercomparison Project (CMIP6). We use the pro-

jections of Community Earth System Model 2 (CESM2), developed and maintained by

the NSF’s National Center for Atmospheric Research (NCAR).

All NEX-GDDP models, including CESM-2, projected outcomes correspond to four

different “Shared Socioeconomic Pathway” (SSP) scenarios, named SSP1-2.6, SSP2-

4.5, SSP3-7.0, and SSP5-8.5. Each SSP predicts how a different set of socioeconomic

and policy responses could influence climate outcomes. SSP5-8.5 reflects a worst case

“business as usual” where carbon emissions continue to increase along with historical

trends without policy mitigation. SSP3-7.0 is a “middle of the road” outcome with still

no climate policies, but milder increases in emissions relative to SSP5-8.5. SSP2-4.5

corresponds to a scenario where policy successfully restricts global warming to be below

3C by year 2100, while SSP1-2.6 reflects an “optimistic” outcome where warming is

below 2C. Each model × scenario is a dataset at the day × latitude-longitude grid cell

level, describing the temperature and precipitation at the grid cell for each day of the

year from 2024 to 2050.

We build a congressional district × election year level dataset of weather variables

(average temperature, total precipitation, days of extreme temperature and precip-

itation) by comparing the projected temperature with historical means under each

scenario.

Projected Jobs Data: For job projections, we use the BLS Occupational Outlook

Handbook (BLS OOH), which projects job growth between 2023 and 2033 for various

NAICS code sectors at the 3 to 6 digit levels. We construct the annualized growth rate

of each 6 digit 2012 NAICS sector using the 2012-2022 NAICS crosswalk.10

Starting with our data of green and brown jobs at the block-group × 6 digit NAICS

sector level in 2021, we construct the growth rate of green and brown jobs for each

block-group between 2023 and 2033 by taking a weighted average of the BLS OOH

10https://www.bls.gov/cew/classifications/industry/qcew-naics-hierarchy-crosswalk.htm
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growth rate for each 6-digit NAICS sector, weighted by the current importance of

each sector in that block-group. For example, the annualized growth rate of green

employment in block-group b is:

GreenGrowthbt =

∑I
i GrowthRateit ×GreenEmpbi,2021∑I

i GreenEmpbi,2021
(1)

where i indexes a 6-digit NAICS sector and GreenEmpbi,2021 is the number of green

jobs for sector i in block-group b in year 2021.

We predict the growth rate of block-group-level total employment with the same

method by aggregating all sectors, which gives us the growth rate of the proportion of

green and brown jobs in each block-group. We then aggregate these to the congressional

district level.

The time-series averages of our variables and their projections are plotted in Ap-

pendix Figure B.3. The BLS projects only a modest rise in the green-job share and

an equally modest decline in oil, gas, and coal employment over the next decade. The

geographic distribution projected in 2050 is presented in the maps in Figure B.4.

3 Voter Demand Specification

In this section, we begin by examining the reduced-form effects of climate variation

on voting patterns. We then extend our demand specification to incorporate the in-

fluence of green and brown employment. In addition to a range of robustness checks,

we analyze elections for energy regulators, races that are arguably focused almost ex-

clusively on environmental issues. Finally, we conclude with an analysis of demand

heterogeneity as implied by models of political competition.

We follow the climate-economy literature and include fine geographic (in our case

census block-group) fixed effects, as well as coarser geography by time fixed effects.

Our baseline specification is given by:

ybt = δtempTempbt + δprecPrecipbt + αXbt + µb +Ωc(b),t + ϵbt (2)

where ybt is the share of votes cast for the Democratic candidate minus the share of

votes cast for the Republican candidate in block-group b in election year t. Recall

that a block-group is the stable geographic unit that we employ. Tempbt and Precipbt

are measures of temperature and precipitation in block-group b and election year t

as described in Section 2. Let µb indicate block-group fixed effects, which absorb

time-invariant heterogeneity. We refer to c(b) as the congressional district to which b
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belongs. Ωc(b),t are congressional district × election year fixed effects, and absorb all

the variation coming from candidates and campaigns, as well as other sources of time-

varying heterogeneity at the broader geographic level of a congressional race. More

precisely, as congressional district boundaries change due to redistricting after each

Decennial Census, by congressional district c we intend the geographic unit defined by

a congressional district per redistricting cycle and by the pair (c,t) the congressional

race in election year t. We will use the term congressional district for brevity whenever

it is not confusing.

It is important to note that the remaining variation in weather shocks across block-

groups after introducing congressional district × election year fixed effects is still sub-

stantial. This residual weather variance represents different shares of the overall varia-

tion in temperature and precipitation shocks in different states: Appendix Figure B.5

reports such residual variation shares varying from 3.4% in Illinois to 55.6% in Mon-

tana for temperature. In Xbt we include time-varying sets of controls, and we cluster

our standard errors both at the congressional district c(b) by election t level and at the

block-group level b.

While the exogeneity of weather shocks allows one to obtain unbiased reduced-form

estimates of the parameters δtemp and δprec, a remaining concern is that these estimates

may reflect indirect effects, such as those operating through geographic sorting, rather

than the direct impact of climate shocks on voting. There are at least two reasons

why this is unlikely in our context. First, we focus on short-term weather fluctuations

within two-year election cycles, a time frame too narrow for extreme weather events to

plausibly induce significant selective migration. Second, as we show later, our results

are robust to controlling for a wide set of time-varying observables. These include

the shares of the population that are wage earners, veterans, secondary- and tertiary-

educated, English-speaking, self-employed, rural, retired, never married, native-born,

or married, as well as those working in finance, education, health, the armed forces,

and manufacturing. We also control for the mean of log income, log employment, and

voting-age population.

3.1 Climate Results

Figure 2 presents binned scatter plots based on equation (2), controlling for block-

group fixed effects and congressional district × election year fixed effects. The data

reveal a clear positive relationship between Democratic vote margin and weather shock

variables, with temperature showing a slightly tighter fit than precipitation.

Table 1 explores the robustness of these relationships. Column 1 adds an extensive
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set of time-varying block-group-level controls, while column 2 further includes media

market (DMA) × election year fixed effects to account for climate effects driven by

differential media exposure.

The coefficients remain robust and economically meaningful. A one standard de-

viation increase in extreme temperature days (defined as days above two standard

deviations from the historical average, or 8.13 days) is associated with a 0.66 per-

centage point increase in Democratic vote margin (column 1). For context, this effect

is comparable to 2.5 additional minutes of weekly Fox News exposure (Martin and

Yurukoglu, 2017), or slightly exceeds one standard deviation in partisan advertising

intensity (Spenkuch and Toniatti, 2018). While smaller, the effect of precipitation is

also politically relevant: a one standard deviation increase (6.74 days) raises the Demo-

cratic vote margin by 0.35 percentage points. Taken together, our climate variables

suggest that a one standard deviation shock increases Democratic margins by 0.94

percentage points.

In columns 3 and 4, we exclude block-group fixed effects. Column 4 also includes

a time-varying sixth-degree polynomial in latitude and longitude (with interactions).

These specifications rely solely on within–congressional district-year variation to iden-

tify climate effects. This change has two implications: first, because block-groups are

geographically small, these specifications allow for more variation in weather and relax

concerns about SUTVA violations (e.g., extreme weather in one block-group affecting

nearby areas); second, they may introduce bias from geographic sorting—for instance,

if wealthier, more Democratic-leaning areas with greater capacity for climate adapta-

tion also experience more extreme weather.

As shown in columns 3 and 4, the estimated effects increase substantially, by factors

of 5.6 (temperature) and 3.4 (precipitation). This pattern is consistent with SUTVA

violations or suggests that block-group fixed effects absorb important within-district-

year variation positively correlated with Democratic vote share. To be conservative,

we proceed with specifications including block-group fixed effects, interpreting our

estimates as lower bounds.

Columns 5–7 report standard errors adjusted for spatial autocorrelation using the

Conley (1999) estimator with radii of 25, 50, and 100 km. The precision of our estimates

remains unaffected, reinforcing their robustness.

In Appendix Figure B.6, we explore whether our climate variables affect turnout.

It appears that temperature extremes do affect turnout, which may partially explain

the effects on vote margins. However, the magnitude is not sufficient to fully account

for the observed impact. Notably, extreme precipitation has no statistically significant

effect on turnout and when estimating models that controlling for turnout—despite its
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potential endogeneity—the estimated effects on Democratic vote share remain signifi-

cant, indicating that turnout does not fully mediate the relationship.

Robustness to Climate Variable Definitions. To test sensitivity to our choice

of climate measures, Figure 3 presents estimates using alternative bin-based temper-

ature and precipitation variables. The vote share effects for temperature are clearly

concentrated in the extreme ranges, particularly for counts of days above 25°C. Pre-
cipitation effects, by contrast, emerge at more moderate levels.

Consistent with these patterns, Appendix Figure B.7 shows binned scatter plots us-

ing average (rather than extreme) weather conditions. The results have the same sign as

in our baseline specification but are attenuated and less precisely estimated—unsurprising

given prior evidence that extreme events, not averages, drive behavioral and economic

outcomes (e.g. Schlenker and Roberts (2009) in the case of agriculture and Carleton

et al. (2022) in the case of mortality). We therefore focus on extremes in our main

analysis.

Appendix Figure B.8 provides evidence that the relationship between extreme

weather and Democratic vote margin is not limited to specifications with congressional

district × election fixed effects. A potential concern with our preferred specification is

that, by absorbing a large share of the variation through tight fixed effects, it may rely

on residual variation that is noisier or less representative. Reassuringly, estimates from

a specification that includes only block-group and year fixed effects yield consistent

results, with even larger magnitudes. This strengthens confidence in the robustness of

our findings. Nonetheless, we proceed with the more conservative specification that

includes congressional district × election fixed effects, as it flexibly accounts for supply-

side factors and isolates the demand-side impact of climate extremes.

Appendix Tables B.2 and B.3 further confirm the robustness of our findings across

various climate variable specifications—including average versus extreme values, and

positive versus negative deviations—with and without block-group fixed effects and

controls. All results are qualitatively consistent with our main estimates.

Finally, Appendix Table B.4 probes the robustness to different assumptions about

the unobserved time-varying heterogeneity. First, we replace district–year fixed effects

with only year fixed effects (column 2). Second, we replace block-group fixed effects

with block-group–specific linear trends (column 3). In both cases, the estimates for

our main variables are very similar to the baseline. The last three columns examine

the timing of the political effects of temperature and precipitation shocks by adding

their one-year leads and lags to the baseline. In the baseline, the precipitation lead

is significant; however, this effect becomes small and insignificant when alternative
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time controls are introduced. Across specifications, lead effects are not systematically

significant, while the contemporaneous temperature effects remain similar in magnitude

and strongly significant.

3.2 Incorporating Climate Adaptation: Green and Brown

Jobs

We now turn to labor market changes associated with climate policy. Specifically,

we investigate how the local shares of green and brown jobs—defined in Section 2—re-

late to electoral outcomes. Green jobs are those linked to green activities, while brown

jobs are tied to oil and gas extraction, coal mining and their support activities. We

hypothesize that a higher share of green jobs increases support for climate-friendly

policies—such as carbon pricing and green subsidies—and thus boosts the vote share

for Democratic candidates, who tend to advocate for such policies during our sam-

ple period. Conversely, we expect a higher share of brown jobs to reduce Democratic

support.

We extend equation (2) as follows:

ybt = δtempTempbt + δprecPrecipbt + δbrownShBrEmpbt + δgreenShGrEmpbt

+ αXbt + µb +Ωc(b),t + ϵbt (3)

where ShGrEmpbt = GreenEmpbt/Empbt is the share of green employmentGreenEmpbt

as described in Section 2 and total employment Empbt in block-group b (from LODES

RAC). The share of brown jobs ShBrEmpbt is defined analogously.

Identifying the causal effect of green and brown jobs on vote margins poses a distinct

set of challenges relative to our weather shock variables. First, there is less within

block-group variation over time in employment composition than in weather shocks, as

employment profiles tend to persist across congressional cycles. Nevertheless, due to

the high spatial granularity of our voting data, we are still able to detect meaningful

effects from the substantial job shifts that do occur. We therefore include green and

brown employment terms alongside weather variables in equation (3), allowing us to

directly compare their estimated effects.

A second challenge is potential endogeneity. As with climate exposure, omitted

variable bias can arise if unobserved characteristics influence both employment com-

position and voting behavior. For instance, block-groups with higher brown job shares

may inherently lean more conservative, regardless of employment, due to broader re-

gional or cultural factors. Furthermore, green and brown jobs are not randomly dis-
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tributed: green subsidies may be targeted to either politically contested areas or par-

tisan strongholds, introducing ambiguity in the expected direction of bias. To address

this, we adopt an instrumental variables strategy, constructing shift-share instruments

based on national trends in green and brown employment (the “shift”) and initial year

2000 local employment shares (the “share”), as detailed in Appendix Section A.3. Fol-

lowing Borusyak, Hull and Jaravel (2022), we control for initial employment shares

whenever block-group fixed effects are excluded. Appendix Figure B.9 presents the

first stage relationship for each variable.

Table 2 presents estimates from several variants of equation (3), while Appendix

Figure B.10 visually illustrates the relationship between vote margins and employment

shares with binned scatter plots, estimated with two-way fixed effects. Columns 1-3

of Table 2 include block-group and congressional district × election year fixed effects.

Column 2 adds media market (DMA) × election year fixed effects to account for poten-

tial media-driven variation in climate salience. Column 3 also adjusts standard errors

for spatial autocorrelation using a 100 km radius.

As expected, a higher share of brown employment is associated with lower Demo-

cratic vote margins. The effect is substantial: a one standard deviation increase in

brown job share (1.75 percentage points) reduces the Democratic margin by 0.62 per-

centage points (Column 1). For green employment, we find a positive association with

Democratic support, albeit smaller in magnitude. A one standard deviation increase

in green job share (0.62 percentage points) raises the Democratic vote margin by 0.21

percentage points. Including DMA × election year fixed effects in Column 2 does not

materially alter these results. Moreover, comparing Table 2 to Table 1, we observe that

controlling for the effects of jobs does not meaningfully reduces the estimated impacts

of climate shocks.

Columns 4 and 5 report estimates omitting block-group fixed effects. As we saw

in Table 1, our estimated coefficients increase in absolute magnitude. However, while

the effect of brown jobs remains negative, the green jobs coefficient turns negative as

well, contrary to our hypothesis. This reversal may be due to green employment being

correlated with unobserved block-group characteristics that correlate positively with

Republican vote share. Indeed, green job shares are positively correlated with control

variables such as the share of rural residents or married individuals, and negatively

correlated with the share of college-educated residents. These patterns suggest that

green employment is likely confounded with unobserved block-group characteristics

not fully captured by our control set. This provides additional support for including

block-group fixed effects, even at the cost of reduced variation in demand factors.

Columns 6 and 7 present IV estimates using the shift-share instruments. Column 6
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includes block-group fixed effects, while Column 7 omits them. The IV estimates largely

confirm our OLS findings, particularly regarding brown jobs. However, the estimated

effect of green employment increases notably, suggesting attenuation bias in the OLS

estimates, likely due to measurement error. This is plausible, as green employment is

often dispersed across emerging or ambiguously classified sectors, unlike brown jobs

which are concentrated in well-defined fossil fuel industries.

Overall, our demand-side analysis yields several key insights. First, concerns that

weak voter demand might explain limited climate policy action appear unfounded. Lo-

cal temperature and precipitation shocks significantly shift political behavior—possibly

consistent with models of learning or salience, as in Hoffmann et al. (2022). Second,

local labor market changes also matter, though their estimated effects are somewhat

less stable and precise than those of weather shocks. In line with expectations, green

jobs predict greater support for Democratic candidates, while brown jobs predict the

opposite.

In terms of explanatory power, as reported at the bottom of Table 2, employment

shocks and climate shocks are roughly comparable in magnitude. A one standard de-

viation increase in extreme temperature or precipitation has a similar effect on Demo-

cratic vote share as a comparable change in green or brown job shares. In sum, both

climate-related weather shocks and mitigation-related employment exert quantitatively

meaningful and directionally consistent influence on voter demand for climate policy.

3.2.1 Further Demand Robustness: Evidence from Elections of En-

ergy Regulators

The analysis of demand so far was designed to concentrate on the elements of voter

choice specifically relevant for the election of environmentally responsive candidates in

U.S. congressional races. Nonetheless, during congressional campaigns a large number

of policy issues are typically debated and party identifiers operate as proxies of much

more than environmental policy alone. An assessment of contamination due to other

correlated policy dimensions, different from the environmental one, and pure partisan

divisions is necessary.

An ideal robustness test along these lines would involve a check of whether our

approach to demand provides consistent estimates of demand sensitivities to weather

and employment shocks also when applied to electoral races exclusively focused on

environmental policy. Furthermore, estimated demand parameters should display con-

sistent sign and somewhat comparable magnitudes across congressional elections and

environmentally focused races, at least if one is to take the nature of the voter choice
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problem to be not too different across elections. While State legislatures or local elec-

tions do not focus on unidimensional platforms and are therefore not useful for this

contrast, certain state regulators endowed with specific environmental mandates are

elected, and not appointed, and these races provide a valid benchmark for robustness.

We focus on partisan Railroad Commissioner elections in Texas, building on the idea

first proposed in Boomhower (2024), and we estimate our demand specification in this

sample.

The Texas Railroad Commission oversees the oil and gas industry, along with nat-

ural gas utilities, pipelines, and coal and uranium mining in the State. Its three

commissioners are elected on a staggered schedule, with one seat up for election every

even-numbered year. We compile precinct-level data on vote shares in these races. Un-

like U.S. House elections, where the salience of climate issues may vary depending on

candidate platforms, Railroad Commission elections directly concern the regulation of

fossil fuel and extractive industries with major environmental implications and without

ambiguity for voters.

Appendix Table B.5 reproduces our main specification from Table 2, restricting the

sample to Texas and estimating the model separately for U.S. House and Railroad Com-

mission elections. In column 2, we find that the Texas-specific coefficients are quanti-

tatively similar when the outcome is block-group level support for energy regulators.

Because Railroad Commissioners focus almost exclusively on energy and environmen-

tal regulation, this consistency strengthens the interpretation that our shocks capture

demand for climate policy rather than broader partisan alignment. Quantitatively, the

effect of our temperature shock is quite similar between what found for House elections

and Railroad Commissioners, while the effect of our precipitation shock is larger, and

significant, for the Railroad Commissioners (perhaps reflecting agricultural interests in

water). The brown jobs effect is also slightly larger in magnitude, while the green jobs

measure is about the double the size and significant.

In columns 3 and 4, we further include vote shares in the relevant up- or down-ballot

race (i.e., U.S. House vote share when the outcome is Commissioner support, and vice

versa) as controls. While these controls are endogenous, they provide an important

check on whether the effects we estimate may be primarily driven by underlying parti-

sanship. We find that three of the four shocks are insignificant in U.S. House elections

when controlling for Commissioner vote shares, but all four are significant in Commis-

sioner races when controlling for House vote shares. This asymmetry suggests that the

shocks affect voting behavior in climate salient elections in ways not fully explained by

partisanship alone, supporting our overall interpretation of the demand analysis.
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3.3 Demand Heterogeneity

In Appendix Figure B.11, we explore regional heterogeneity in the voter demand

function by splitting the sample into the four Census regions (Northeast, Midwest,

South, and West). The analysis qualitatively confirms the national-level results. The

signs of the estimates align with our baseline, though restricting the sample to individ-

ual regions reduces precision in some cases. Brown jobs exhibit a consistently negative

effect across regions, with only a minor loss of precision in the Midwest. Demand elas-

ticities with respect to temperature are significant in the South and West, while green

jobs are significant in the Northeast and Midwest.

To conclude our demand analysis, we also examine the heterogeneity implied by

models of political competition (Persson and Tabellini, 2002). If climate shocks push

voters towards wanting more left-wing climate policy, the effects of demand shocks on

Democratic vote margins should be larger when the difference in the candidate climate

ideal points is larger, as the voters will be more attracted to the Democrats than the

Republicans. We show this formally in Appendix C.

As the positions of candidates are endogenous, we leverage the same variables we

use as instruments in the supply analysis below (see Section 4.1). We then calculate

the difference between the two candidates in this measure for each congressional race.

Appendix Figure B.12a and Appendix Figure B.12b both show that the climate effects

are larger where the difference in neighboring same-party candidate positions is larger.

In Appendix Table B.6 we further show that the effects of all of our demand shocks

are larger when the Republican and Democratic candidates are farther apart in (the

exogenous component of) climate ideology, either measured averaging over all years,

or measured using only contemporaneously measured ideology. This heterogeneity

provides additional evidence that climate shocks are changing vote margins by changing

voters’ preferences for climate policy towards the platforms of Democrats.

In principle, these and other sources of heterogeneity could be incorporated into

the structural analysis and projections below. However, we focus on our simpler, linear

model of demand in order to retain enough precision to make meaningful forecasts out

to 2050.

4 Estimating Effects on Politician Supply

This section extends our empirical analysis beyond voter demand. The reasons

for focusing on political supply in the context of climate politics are twofold. First,

by focusing on the demand-supply equilibrium, we are able to recover important pa-
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rameters, such as the sensitivity of policy platforms to expected vote shares and the

sensitivity of vote shares to changes in the positions of politicians. These parameters

are of independent interest for the Political Economy literature focused on elections.

Second, a full system for demand and supply is necessary for forecasting future political

equilibria and performing the projections in Section 5.

The reduced-form estimates in the previous section are internally valid estimates of

the effects of climate changes and climate-related employment changes on partisan vote

shares, holding fixed candidates and campaign platforms in each U.S. House election.

Given our interest in predicting the effect of climate change on equilibrium policy,

however, we need to account for the sensitivity of policy platforms to expected vote

shares. We also need to account for how weather and jobs shocks change the supply of

environmental policies, as temperature, precipitation, and employment could directly

affect candidate ideal points on climate, independently of effects on voter demand.

Estimating these effects means leaving the within-congressional district×election

year variation and moving to cross variation, as candidate platforms only vary across

congressional races. Our demand estimates in Section 3 still help identify policy supply

by capturing voters’ reactions to the shocks, but more structure for the supply functions

is needed.

In this section, we work with an empirical model for integrating political demand

and supply for our problem. As a simple microfoundation for our system of equations,

we set up and solve a standard probabilistic voting model of political competition over

climate policy in Appendix C. The model illustrates why conditioning on equilibrium

supply platforms is important for recovering demand, and why controlling for demand

parameters is important for recovering the direct effects on supply. We deliberately

keep the framework streamlined (i.e. linear in the parameters) rather than adopting

the full set of nonlinear functional forms implied by the underlying voting model. This

choice enhances the transparency of identification. The model’s parametric simplicity

also improves statistical precision and facilitates out-of-sample forecasting of politi-

cal equilibria under climate change, as we demonstrate in Section 5. More complex

structures would complicate forward-looking projections and require additional data

that may be unavailable. Despite its simplicity, our framework captures meaningful

and non-obvious interactions between demand and supply in response to climate and

employment shocks.
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4.1 Supply Specification

As political competition occurs at the congressional district level c in election year t

and policy platforms of Republicans, xrct, and Democrats, xdct, vary only across districts,

we cannot rely solely on block-group level b variation.

Maintaining the definition of ybt as the block-group level winning margin of the

Democrat at time t, denote ȳct the average winning margin of the Democratic candidate

in district c. Further indicate with Vbt block-group exogenous determinants including

weather shifters, employment (including green and brown jobs), and other exogenous

covariates, such as the employment rate, and with V̄ct the vector of averages of these

covariates in congressional district c at time t.

We model a candidate’s policy position as a function of four components. First, a

set of exogenous determinants, V̄ct, captures changes in candidate preferences driven

by district conditions and candidate learning. Second, candidate positions respond to

expected electoral support, proxied by ȳct. Third, we include district and election-year

fixed effects, along with an idiosyncratic error term, to account for unobserved het-

erogeneity. Fourth, we incorporate a party-specific supply shifter, zpct, which reflects

broader party p effects and factors not driven by district-specific demand but affecting

the candidate’s platform choice. We define zdct for Democratic Party candidates as the

average of the environmental policy positions taken by other Democrats in congres-

sional districts immediately neighboring c within the state. Similarly, zrct is defined for

Republican Party candidates. We assume that each party’s supply shifter only affects

that party candidate’s supply (conditional on district and election year fixed effects),

and is orthogonal to other, unobserved determinants of policy supply and demand.

Democrat supply of policy xdct is only a function of zdct, and similarly for the Republi-

can candidate (these, however, depend on each other through their effects on expected

vote shares). These supply shifters not only enhance realism by allowing local party

effects to influence candidate platforms, but they are also crucial for identification.

Without zpct, our empirical model would lack the necessary exogenous variation to iso-

late the effects of changes in policy platforms and other endogenous variables on vote

shares. Finally, zpct has the advantage of being easily computable forward, an essential

feature necessary for the analysis of Section 5 and the construction of the 2022-2050

projections. Appendix Figure B.13 presents the first-stage relationship between a can-

didate’s environmental platform and the average environmental stance of same-party

candidates in adjacent districts within the state.
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With these elements in mind, we can write Democrat policy supply as:

xdct = λdV̄ct + βdȳct + πdzdct + ωd
c + ζdt + ηdct, (4)

and, similarly, the Republican policy supply function is given by:

xrct = λrV̄ct + βrȳct + πrzrct + ωr
c + ζrt + ηrct. (5)

To close the empirical model, let us recall our demand specification from Section 3:

ybt = δVbt +Ωct + µb + εbt. (6)

It is important here to notice that we can consistently estimate the coefficient vector δ

using the approach of Section 3. To further capture cross-district variation in demand

driven by candidate positions, we parameterize the district-by-year fixed effects Ωct as:

Ωct = γdxdct + γrxrct + µc + κt + εct. (7)

This specification allows the average democratic vote share in a district-year, net of

block-group fixed effects and block-group time-varying covariates Vbt, to be driven by

Democratic and Republican campaign platform positions. Combining equations (6)

and (7) and aggregating at the (c, t) level, we have the demand function:

ȳct = δV̄ct + γdxdct + γrxrct + (µc + µ̄c)︸ ︷︷ ︸
νc

+κt + (εct + ε̄ct)︸ ︷︷ ︸
ξct

(8)

where ·̄ denote district averages of the block-group level variables.

Our empirical model therefore consists of the set of equations (4), (5), and (8),

which jointly describe the congressional race political equilibrium. The system (4),

(5), and (8) is statistically identified and a constructive proof is offered in Appendix

D. Intuition for the identification of the main demand parameters is discussed in the

previous section. For supply parameters, it is also straightforward. A shift in the

position of a Democratic candidate affects the position of the Republican opponent

only through the expected vote shares (and vice versa). Hence, for example, dividing

the reduced-form slope of the Democratic shifter zdct on the Republican position xrct

by the reduced-form slope of the Democratic shifter on the vote share ȳct gives the

sensitivity of the Republican position to the expected vote share, the parameter βr.

Given an estimate of βr and the reduce-form effects of the weather and jobs shocks

V̄ct on ȳct and on xrct, one can then obtain a linear equation in an estimate of λr,
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the direct effect of the shocks on the Republican policy platform. Similarly, given an

estimate of βr and the reduce-form effects of zrct on ȳct and on xrct, one can obtain an

estimate of πr, the local party effect on the Republican policy platform. And similarly

for Democrats.

4.2 Estimation

We estimate the system of equations using a two-step GMM procedure. The first

step involves a block-group level demand estimation, which we have already performed

in Section 3. We employ equation (6) to estimate δ̂ and district-by-year fixed effects

Ω̂ct. The second step proceeds by performing the district-level estimation. Starting

from equations (4), (5), and (7), we can substitute in the estimated district-by-year

fixed effects Ω̂ct and employ a (weighted) two-step Generalized Method of Moments

(GMM) to estimate all remaining parameters.

Specifically, we first apply the Frisch-Waugh-Lovell theorem to partial out the

congressional district fixed effects and year fixed effects from V̄ct, zdct, zrct, xdct, xrct,

ȳct, and Ω̂ct, and obtain ˜̄Vct, z̃dct, z̃rct, x̃dct, x̃rct, ˜̄yct, and Ω̃ct. Denoting η̃dct = x̃dct −(
λd ˜̄Vct + βd ˜̄yct + πdz̃dct

)
, η̃rct = x̃rct −

(
λr ˜̄Vct + βr ˜̄yct + πrz̃rct

)
, and ε̃ct = Ω̃ct − γdx̃dct −

γrx̃rct, our sample moment conditions are:

η̃dct ·
[
˜̄V

′
ct, z̃

d
ct, z̃

r
ct

]
= 0,

η̃rct ·
[
˜̄V

′
ct, z̃

d
ct, z̃

r
ct

]
= 0,

ε̃ct ·
[
z̃dct, z̃

r
ct

]
= 0,

Cov(η̃dct, η̃
r
ct) = 0,

Cov(ε̃ct, η̃
r
ct) = 0,

Cov(η̃dct, ε̃ct) = 0,

In order to correct for the fact that the demand district-by-year fixed effects, Ω̂ct,

which are outcomes in equation (7), are estimated and are therefore affected by sam-

pling error, we weight each (c, t) observation by the inverse of the variance of the

estimated Ω̂ct in the GMM objective function.

For the computation of the asymptotic variance-covariance matrix of the GMM

estimator, we use a degrees of freedom correction based on the number of equations in

the system and cluster our standard errors at the congressional district level.
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4.3 Results of the Equilibrium Model

Table 3 presents the estimates of our equilibrium model. The table is divided

into three parts, corresponding to the system of equations (4), (5), and (8). The

first part of the table reports estimates for the position of the environmental policy

platform of the Democrats, based on equation (4). A one standard deviation increase

in the number of days with temperature exceeding two standard deviations results in

Democrats shifting their environmental policy position to the right by 0.016 (=0.002 ×
8.13) points, equivalent to 5% of the sample standard deviation in Democratic positions.

The effect of precipitation on Democratic positioning is negligible.

Temperature making Democratic candidates more moderate may seem counterin-

tuitive. However, it is important to note that this effect is net of the effect on voter

demand, and so can be interpreted as the additional effect of climate on the candidate’s

ideal point. Thus, candidates are not pulled to the left in climate as much as would be

predicted by demand alone. This could be because of a variety of forces (e.g., candidate

selection, special interests influence, etc.), or simply any unmodeled mechanism where

climate shocks make future climate policy more salient, and so candidates decide to

pivot to the center to compete more effectively on this dimension.

While imprecisely estimated, the effects of green and brown jobs on Democratic

positioning are similar in magnitude, but intuitively opposite in direction. For instance,

a one standard deviation increase in brown jobs moves Democrats 0.034 points closer

to the center, whereas a comparable increase in green jobs shifts their position 0.043

points further to the left.

Democrats are also highly responsive to changes in expected voter demand. A one

standard deviation increase in their expected vote share difference allows Democratic

party candidates to shift 0.63 points further to the left in the policy space, equivalent

to almost a two-standard-deviation shift. Furthermore, the coefficient on the supply

shifter zdct is statistically significant, indicating that Democrats, intuitively, adjust their

positions based on the environmental policies of their local congressional delegation.

This also indicates a strong first-stage for identifying the Democratic supply equation.

The estimated slope πd is 0.18, however, an effect well below a 1:1 pass-through of party

policy onto candidates’ electoral platforms. We interpret this magnitude as indicating

that party influence on environmental positions, while present, is not overwhelming.11

11An interesting contrast here is between the pre-electoral party influence estimated in this model and
the much higher post-electoral party influence estimated in post-electoral models, such as Canen, Kendall
and Trebbi (2020) and Canen, Kendall and Trebbi (2021). It seems plausible that parties may allow more
flexibility at a time when the key concern is getting their own representatives elected, relative to the point
where the legislative party line needs to be voted and passed.
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The second part of Table 3 reports estimates for the Republicans’ environmental

policy positioning, based on equation (5). In contrast to Democrats, Republican can-

didates are generally less responsive to weather and job shocks. Republicans’ policy

positions are, however, significantly dependent on the expected vote share advantage

of Democrats. The marginal effect of βr is less than one-fifth that of the corresponding

Democratic marginal effect and has the opposite sign: a one standard deviation increase

in Democratic vote share leads Republican candidates to adopt a more conservative

policy stance. This may reflect a strategy of reinforcing conservative credentials or

signaling “character” in the sense of Kartik and McAfee (2007). Within the framework

of Appendix C this pattern could arise when Republican candidates either (i) judge

their chances of winning to be slim, prompting them to signal their true ideological

stance to voters or party leaders; or (ii) place greater weight on policy goals than on

electoral victory. In the last part of the panel, we see that the party shifter zrct’s slope is

statistically significant. Similarly to Democrats, the estimated coefficient is around 0.2

and statistically different from 1. This finding suggests that, even within the Republi-

can Party, local party delegations do not fully determine candidates’ platform choices.

Instead, candidates retain substantial discretion in shaping their local environmental

positions. This is particularly noteworthy given the common assumption that plat-

forms have become increasingly “nationalized” in recent years, as argued by Hopkins

(2018), and especially for the GOP.

The final part of Table 3 provides estimates for the district-level demand equation

(equation (8)). By construction, the effects of weather and job shocks on voter de-

mand are the same as those observed in Section 3. What the district-level demand

equation reveals is that voters are significantly more responsive to shifts in Democratic

platform positioning compared to Republican positioning. For example, holding the

environmental position of the Republican candidate constant, a move of one standard

deviation to the right (i.e. towards the center) by a Democratic candidate increases

their vote margin by 9.2 percentage points. In contrast, a one standard deviation move

to the right by Republican candidates decreases the Democratic vote margin by only

0.59 percentage points.

In Appendix Table B.7, we re-estimate the model, incorporating controls for differ-

ences in employment, income, and voting-age population at the congressional district

level, added symmetrically to all three equations of the system. The results confirm

that our estimates remain robust when accounting for these additional district charac-

teristics.

As an additional check on our supply estimation, we conduct a placebo exercise

where we re-estimate the model, but use only the cultural positions of the candidates,
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thus excluding the environmental dimension.12 Appendix Table B.8 shows the resulting

estimates. Naturally, the response of voter demand to our climate and job shocks re-

main unchanged, as these are estimated using within-district-year variation. However,

we also see that none of these shocks affect candidate cultural positions. Furthermore,

the cultural ideal points do not affect overall voter demand, and these remain identified

because the instruments (neighboring same-party cultural positions) are still relevant.

This exercise shows that our environmental platforms reflect not just general ideology,

but a specific, climate-relevant dimension.

Reduced-form Estimates. Given our structural estimates, one can calculate

reduced-form coefficients, providing insight into how the model’s exogenous variables

(e.g., weather shocks, employment, party supply shifters) influence equilibrium supply

and demand responses.

Specifically, define Ξ =
1

1− βdγd − βrγr
,Λct = ξct + γdηdct + γrηrct, αct = νc + κt,

ρdct = ωd
c + ζdt , and ρrct = ωr

c + ζrt . Then, the reduced-form equations for the demand

and supply system are:

ȳct =Ξ
(
αct + γdρdct + γrρrct

)
+ Ξ

(
δ̃ + γdλd + γrλr

)
V̄ct

+
(
Ξγdπd

)
zdct + (Ξγrπr) zrct + (ΞΛct)

xdct =
(
ρdct + βdΞ

(
αct + γdρdct + γrρrct

))
+

(
λ̃d + βdΞ

(
δ + γdλd + γrλr

))
V̄ct

+
(
βdΞγdπd + πd

)
zdct + βd (Ξγrπr) zrct +

(
βdΞΛct + ηdct

)
xrct =

(
ρrct + βrΞ

(
αct + γdρdct + γrρrct

))
+

(
λ̃r + βrΞ

(
δ + γdλd + γrλr

))
V̄ct

+ βr
(
Ξγdπd

)
zdct + (βrΞγrπr + πr) zrct + (βrΞΛct + ηrct) .

These coefficients allow us to distinguish between direct effects and indirect effects. To

see these effects visually in the system above, we mark with a tilde (̃·) the parameters

that reflect the direct effects and underline (·) the parameters that represent the indirect

effects.

The results are reported in Table 4, which is divided into three panels, corresponding

to the three estimating equations. The reduced-form coefficients related to weather

and job shocks are shown across the rows. In columns (1)–(3), we report the effects of

12Longuet-Marx (2024) shows that Democrats treat environmental issues as cultural, while Republicans
treat them as economic issues.
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temperature shocks on Democratic vote margin, decomposing the total effects into a

direct component (δtemp) and indirect effects arising from changes in policy positions

(γdλd + γrλr). As observed in the previous table, temperature shocks are associated

with an increase in the share of Democratic votes. Notably, Democrats respond to

these shocks by shifting slightly to the right, and even small rightward shifts lead to

higher vote margins. Consequently, the indirect effect is positive and comparable in

magnitude to the direct effect.

Despite Democrats’ tendency to shift rightward in response to temperature shocks,

their actual movements in equilibrium are a precise zero (see column 6). This is because

the increase in expected vote margin simultaneously allows them to shift further to the

left, as indicated by the βd coefficient.

Republican responses to temperature shocks are negligible, with small and statis-

tically insignificant effects (see columns 7-9). Similarly, the effects of precipitation

largely align with those of temperature shocks, though they are smaller in magnitude

and statistically imprecise.

The last two rows of the table present the reduced-form effects of green and brown

jobs. As observed in the demand-side estimation, a higher share of brown jobs is

negatively associated with Democratic vote margin. However, in equilibrium, these

effects are muted as Democrats adopt more conservative environmental positions. The

resulting shift is sufficiently large that the total effect becomes positive, although it is

not statistically significant (see column 6).

In contrast, the effects of green jobs are more pronounced. As seen in the demand-

side estimation, a higher share of green jobs is positively associated with Democratic

vote margin. However, two supply-side factors offset this effect. First, as the share

of green jobs increases, Democratic candidates shift their platforms further to the

left. Second, as their vote margin increases, they move even further leftward (column

6). The combined effects of these two forces result in a total effect that, although

imprecisely measured, is negatively associated with Democratic vote margin. A ratio-

nalization of this finding is plausible. It would appear as Democratic candidates, who

may be uncertain about the exact elasticity of vote margins to green jobs, overestimate

the the support they may garner from green transition employment, especially in terms

of how extreme a policy position green jobs may afford them in the campaign.
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5 Projecting Political Impacts of Climate Change

The results of the econometric model so far present a series of economically rele-

vant political elasticities, yet they do not make immediately explicit how climate shocks

and employment changes may ultimately translate into different political equilibria in

the future. For example, it is unclear based on Table 3 alone how big of a difference

medium-term weather shocks to a solid Democratic state like California rather than

weather shocks to a swing Republican leaning state like Arizona may matter electorally,

and in terms of future House majorities and roll-call voting. Indeed, climate shocks

to California may lead to no major congressional composition change, leaving Demo-

cratic seat shares unchanged in the future. Temperature and precipitation shocks in

Arizona may instead erode substantially Republican seat shares, shifting support to

more climate friendly politicians.

Using the projected values of our independent variables discussed in Section 2, we

obtain location-specific estimates for every election year from 2022 to 2050. We use the

model’s reduced-form coefficients to project how the political equilibrium will evolve

over time in response to climate and employment changes until the year 2050. To do

so, we begin the projections in 2022, using each congressional district’s observed base-

line values for (i) the Democrat’s vote margin ȳct, (ii) the Democrat’s policy position

xdct, and (iii) the Republican’s policy position xrct. At two-year intervals (i.e., 2022,

2024, 2026, etc.), we construct the policy shifters zdct and zrct by taking the average

of the lagged xd and xr from adjacent districts of district c. We then incorporate

the predicted district-level weather shocks (temperature and precipitation extremes),

obtained from multiple climate models, as well as predicted green and brown employ-

ment rates, and updated policy shifters into the reduced-form expressions to calculate

the next-period values for ȳ, xd, and xr. In each projection step, we fix the district-

and year-specific fixed effects (estimated from the structural estimation) to their 2020

values, thus assuming no redistricting and no further unobserved shocks beyond those

captured by weather and employment. The updated outcomes,
(
ȳc,t+2, x

d
c,t+2, x

r
c,t+2

)
,

then serve as initial conditions for the subsequent congressional cycle. Iterating this

process through 2050 provides a forward simulation of each district’s vote margin and

policy positions under evolving weather and employment structures, while holding the

unobserved district and year-specific components at their baseline levels.

To construct 95% confidence intervals, we perform a 5,000-round bootstrap. In

each round, we draw the structural coefficients from a multivariate normal distribution

with means equal to the estimated parameters and a covariance matrix given by the

cluster-robust variance estimates from the two-step GMM. We also randomly sample
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residuals from the structural estimation and add them to the predicted ȳct, x
d
ct, and

xrct. This procedure produces prediction intervals that account for both parameter

uncertainty and unexplained variation in the original estimates.

In Panel A of Figure 4, we plot the contribution of temperature shocks to Demo-

cratic vote margins, averaged across congressional districts from 2022 to 2050, under

two different temperature scenarios: SSP5-8.5 and SSP1.2-6. The SSP5-8.5 scenario

assumes that carbon emissions continue to increase along historical trends without pol-

icy mitigation, while the SSP1-2.6 scenario reflects the highest level of climate change

mitigation, keeping global surface temperature changes below 2 degrees Celsius. For

these reasons, the two scenarios can be interpreted as conceptual upper (pessimistic)

and lower (optimistic) bounds in this exercise. Figure 4 also decomposes the effects

into temperature’s direct impact on vote margins and the indirect effects generated by

Democratic and Republican policy responses. The final plot in each panel presents the

total effects.

Under the SSP5-8.5 scenario, we project average Democratic vote margins to in-

crease by 1.4 percentage points by 2050 due to temperature. This increase arises both

from the direct effects of rising temperature shocks on vote margin and the indirect ef-

fects of Democratic candidates shifting slightly to the right, a response that resonates

strongly with voters. As expected, the effects are more muted under the SSP1-2.6

scenario, where Democratic vote margins are projected to increase by 0.8 percentage

points.

In Panel B, we present the contribution of precipitation shocks to projected vote

margins under the two climate scenarios. Unlike temperature shocks, the effects of

precipitation are statistically imprecise, as suggested by our reduced-form estimates.

Both climate models indicate that the impact of precipitation on vote margins will

change about 0.2 percentage point over the projection period.

Panel C displays projections for the effects of employment shifts in green and brown

jobs on Democratic vote margins, using the BLS OOH projections. Because these

projections anticipate only a slight rise in the green-job share and an equally modest

decline in the brown-job share, we expect the resulting electoral and ideological effects

to be correspondingly small.13 As observed in Table 4, an increasing share of green jobs

in a district is associated with greater support for Democratic candidates. However, this

support is unlikely to grow over time. Democrats respond to this increased support

by adopting more liberal environmental platforms, leading to a total effect on vote

13These moderate expected changes in employment may stem from the expectation that these sectors will
change little between 2023 and 2033 but could follow a different trajectory from 2033 to 2050. Because we
simply extend the 2023–2033 trend through 2050, we may under-estimate the magnitude of future changes.
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shares that remains negative throughout the period. This correction should not be

overinterpreted, as the effect is not statistically precise.

The contribution of brown jobs to Democratic vote margins follows a similar, albeit

opposite, trend. We project the total effects of brown jobs on vote margins to remain

positive but small in magnitude and statistically imprecise throughout the projection

period. Overall, our projections suggest that mitigation through job composition shifts

appear, based on current information, not a major source of political shift for the period

2022-2050.

Spatial Heterogeneity The results in Figure 4 are averaged across all congres-

sional districts and therefore mask substantial variation across states. To unpack this

heterogeneity, Figure 5 shows, for each district, the change between 2022 and 2050 in

how projected shifts in exogenous variables affect candidates’ ideological positions, the

Democratic vote margin, and the likely winning party. Appendix Figure B.14 breaks

these differences down by state, and Appendix Figure B.15 presents the same informa-

tion on a hexagonal cartogram that highlights the congressional district distribution

by state.

Panels A and B reveal a clear convergence in the U.S. South: Republicans grow

somewhat more progressive, while Democratic candidates become more conservative on

environmental issues. Panel C then illustrates the impact of all shocks on the projected

Democratic vote margin in each district. Every district shows a positive effect for the

Democratic Party, though its magnitude varies widely across space.

The largest temperature shocks are predicted to occur in the Southwest—Oklahoma,

Colorado, Texas, and Arizona—where days exceeding two standard deviations rise by

an average of 68 under the SSP5-8.5 scenario. We estimate this increase boosts Demo-

cratic vote margins by roughly 3 percentage points in these states by 2050. In contrast,

Massachusetts, Illinois, and Rhode Island see gains of less than 1 percentage point. Fur-

thermore, Democratic moderation on environmental issues in parts of the Southeast

drives significant vote swings in Alabama, Georgia, and Florida. Finally, Panel D maps

the projected 2050 electoral outcome: compared to 2022, Democrats pick up four addi-

tional seats, two of which are in the South. Endogenous demand and supply responses

in the model somewhat limit the extent of more substantial party switching.

Compositional Changes to the House of Representatives Given our pro-

jected effects on vote share, one might wonder whether these changes are sufficiently

large to substantively alter the composition of the House of Representatives and poten-

tially its ideological orientation. In Figure 6, we present four plots, all corresponding to

30



the SSP5-8.5 scenario. The upper-left quadrant shows the projected share of Democrats

elected to the House of Representatives, while the upper-right quadrant depicts both

the average and median projected campaign positions on environmental policies of all

elected House members. The bottom panels focus on party-specific trends, with the

bottom-left plot showing the average and median projected campaign positions among

elected Democrats, and the bottom-right plot showing the same for elected Republi-

cans.

Taken as a whole, the plots reveal a changing political landscape. By 2050, the

median member of the House, and to a lesser extent the average member, is projected

to adopt a more liberal stance on environmental policies compared to 2020. This shift

occurs despite the fact that the average and median campaign positions of both elected

Democrats and Republicans are becoming more conservative over time. These seem-

ingly contradictory patterns are explained by the increasing share of House seats held

by Democrats, who, while becoming more moderate themselves, remain significantly

more liberal on environmental policies compared to their Republican counterparts.

Although these results reflect campaign positions on environmental policies, as

demonstrated in Section 4, these positions strongly correlate (0.86) with elected mem-

bers’ ideal points based on roll-call voting, ultimately reflected in equilibrium policy

choices. To gauge the policy impact, we use our estimates to derive counterfactual

voting behavior—and thus the probability that Congress enacts climate legislation.

The American Clean Energy and Security Act of 2009 (“Waxman–Markey”) serves

as our benchmark for a carbon-pricing vote. Our roll-call estimates place the median

House member in that session (a Democrat) at an environmental ideal point of 0.38,

and a predicted probability of voting yes on Waxman-Markey of 63%. Our forecast

implies that the median House member’s ideology in 2050 will become 0.11 units more

progressive, equivalent to shifting their roll-call ideal point to -0.48 and raising the

probability of voting yes on emissions pricing to 72%. In other words, the forces in our

model raise the probability that the House will pass a carbon-pricing bill by roughly 9

percentage points in 2050 relative to 2020.

6 Conclusion

This paper focuses on the politics of climate in the United States from an empirical

perspective. Our main contribution is to econometrically decouple electoral demand

drivers from supply drivers of candidate policy platform choices. Within the set of

demand forces, we are able to separate effects due to extreme temperature and precip-
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itation from economic drivers, such as the loss of brown jobs and the gain of green jobs

in certain geographic areas, which speak to issues of adjustment and adaptation. High

temperature shocks and high precipitation shocks increase support for Democrats, and

similarly the arrival of green jobs. Brown job gains increase support for Republicans.

Both sets of demand shifters have similar economic and statistical significance. On the

supply side, Democrats appear more responsive to voter demand for climate policy. In

turn, voters are sensitive to the environmental policy choices of Democratic candidates

competing in their congressional races, but not of Republicans. Both Democratic and

Republican candidates respond to local party effects in their platform decisions, but

much less than 100 percent.

We use the parameter estimates from our demand and supply model to project

the effects of climate and employment compositional trends 25 years into the future.

Under our climate change scenarios, the analysis shows a consistent electoral shift

toward more pro-environmental candidates (Democrats), even as both Democrats and

Republicans endogenously become mildly less pro-environment.

Methodologically, we present one of the first structural supply-and-demand equi-

librium models of electoral political competition. Demand identification leverages the

unique granularity of the data used in this paper, isolating within-district variation to

estimate demand, and controlling for demand in recovering supply of candidate poli-

cies. We believe that these ingredients will be important for future, arguably richer

and more realistic, quantitative models of electoral competition in political economy

beyond the specific topic of climate politics.

Climate change, however, appears set to be a major social cost for the foreseeable

future. Adaptation to and mitigation of climate change are going to involve policy

decisions that aggregate diverse interests and perspectives. Whether democratic insti-

tutions and electoral competition can deliver these policies remains an open question,

one that our paper does not forcefully answer in the affirmative. Our model is deliber-

ately streamlined, however, and future work should incorporate other realistic margins

of climate change and adaptation (e.g. disasters and migration, as in Desmet and

Rossi-Hansberg (2024)), as well as more margins of political influence (e.g. campaign

finance and special interest politics).

Finally, a large literature has modeled and measured the unavoidable international

cooperation and conflicts over climate policy necessary for adequate mitigation and

adaptation (for a recent quantitative macroeconomic example see Bourany (2024)).

Rigorously incorporating domestic political economy into these models remains an

area for future research.
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Figure 1: Maps showing main independent variables in 2000 and 2020

(a) Extreme temperature measure 2000 (b) Extreme temperature measure 2020

(c) Extreme Precipitation 2000 (d) Extreme Precipitation 2020

(e) Brown jobs 2000 (f) Brown jobs 2020

(g) Green jobs 2000 (h) Green jobs 2020

Notes: Each panel shows the spatial distribution of our main exogenous variables of interest in 2000 (left)
and 2020 (right), as defined in Section 2. The extreme temperature and precipitation measures are defined
as the number of days in the year above the historical mean plus two standard deviations. Panels E to H
show the percentage shares of the green and brown job measures.



Figure 2: The Relationship Between Extreme Temperature and Precipitation and Demo-
cratic Vote Margin
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(b) Extreme Precipitation (2+SD Above Historical Average)

Notes: Each panel is a binned scatter plot showing block group-year-level Democratic vote margin as a
function of extreme temperature or precipitation, controlling for block-group and
Congressional-district-by-year fixed effects. Each dot represents 1% of the sample. The x-axis is extreme
temperature or precipitation, defined as number of days in the year above the historical mean plus two
standard deviations. The y-axis is the Democratic vote margin in the Congressional election. The red
dotted lines are quadratic fits. The sample is Congressional elections from 2000 to 2020. Appendix Figure
B.7 shows the same relationships using average temperature and average precipitation. Appendix Figure
B.8 shows the same specification using only block-group and year FE.



Figure 3: The Relationship Between Temperature and Precipitation Bins and Democratic
Vote Margin
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Notes: Each panel shows estimates of the coefficients on bins of temperature or precipitation from a single
regression at the precinct-year level where the dependent variable is Democratic vote margin. Each dot
represents 1% of the sample. The regression also includes block-group and Congressional-district-by-year
fixed effects, the shares of green and brown jobs, and a set of controls. The sample is Congressional
elections from 2000 to 2020. The graphs plot coefficients with 95% confidence intervals calculated using
standard errors clustered two ways, by block group and Congressional-district-by-year.



Figure 4: Contribution of weather shocks and employment shifts to projected Democratic
vote margins
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Notes: Each panel shows the projected contribution of each exogenous shock on the Democratic vote
margins from 2022 to 2050, studying separately the direct and indirect effects of each shock. The indirect
effects are those operating through endogenous candidate responses, which themselves affect vote shares.
Total effects appear in column 4. Above each plot we report the 2022–2050 difference with 95% confidence
intervals, obtained via a 5,000-round bootstrap. For temperature and precipitation, we plot both SSP5-8.5
(“business as usual”) and SSP1-2.6 (“optimistic”) scenarios from NEX-GDDP. Job projections come from
the BLS Occupational Outlook, as described in Section 2. Appendix Figure B.3 shows the evolution of
each exogenous variable over the same period.



Figure 5: Projected congressional-district shifts from 2022 to 2050.
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(c) Change in Democratic vote-share margin,
2022–2050.

(d) Projected winning party by district in 2050.

Notes: Each panel shows the projected congressional-district shifts from 2022 to 2050 for the main
outcomes of interest, synthesizing the effect of each exogenous shock. Panel A and B show the projected
changes in candidate positions. Panel C shows the projected change in the Democratic vote margin. Panel
D shows the projected election winner in each congressional district in 2050. Appendix Figure B.14 shows
the effect of each shock on the vote margin, including confidence intervals on the state level. Appendix
Figure B.15 shows the same results using a hexagonal cartogram.



Figure 6: Projected Composition of the House of Representative
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Notes: Each panel shows a projected change in the House of Representatives composition between 2022
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Table 3: Structural Parameter Estimates

Name Estimate Std Error Z-value P-value Effects

Democrat’s Supply

λd
temp 0.0020* 0.0011 1.7336 0.0830 0.0157

λd
prec 0.0013 0.0014 0.9517 0.3412 0.0085

λd
G -0.1100 0.1083 -1.0155 0.3099 -0.0426

λd
B 0.0301 0.0292 1.0298 0.3031 0.0339

βd -0.0195 0.0123 -1.5884 0.1122 -0.6257
πd 0.1837** 0.0795 2.3091 0.0209 0.0424

Republican’s Supply

λr
temp -0.0008 0.0015 -0.5163 0.6057 -0.0060

λr
prec 0.0007 0.0021 0.3208 0.7483 0.0042

λr
G 0.1144 0.0999 1.1451 0.2522 0.0443

λr
B -0.0089 0.0241 -0.3696 0.7117 -0.0100

βr 0.0035** 0.0014 2.5740 0.0101 0.1121
πr 0.1972*** 0.0602 3.2773 0.0010 0.0548

District-level Demand

δtemp 0.0828*** 0.0245 3.3789 0.0007 0.6538
δprec 0.0443* 0.0231 1.9190 0.0551 0.2833
δG 0.2160* 0.1174 1.8389 0.0660 0.0837
δB -0.3562*** 0.0927 -3.8428 0.0001 -0.4016
γd 24.8117* 12.9817 1.9113 0.0560 8.6327
γr -1.3158 1.0550 -1.2472 0.2123 -0.5654

Notes: This table presents parameter estimates from the structural equations of
Democrats’ policy supply

(
xd
ct

)
, Republicans’ policy supply

(
xr
ct

)
, and district-level

Democratic vote share
(
ȳct

)
. Standard errors (in parentheses) are clustered by con-

gressional district; z-values and p-values reflect two-sided tests. The final column
(“Marginal Effects”) indicates the change in the outcome—Democrats’ platform in
the first panel, Republicans’ platform in the second panel, and Democrats’ vote
share (on a 0–100 scale) in the third panel—arising from a one-standard-deviation
increase in the corresponding regressor. Estimation uses a two-step GMM ap-
proach with instruments V̄ct, z

d
ct, z

r
ct, and weighting by the inverse variance of the

estimated district-by-year fixed effects in the first step. A single asterisk (∗) indi-
cates significance at the 10% level; two asterisks (∗∗) at the 5% level; and three
asterisks (∗ ∗ ∗) at the 1% level.
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A Constructing Green and Brown Employment

and Corresponding Instruments

Our analysis requires measuring green and brown employment at the block-group-

year level for 2000 to 2020. Since our definition of green and brown employment is

based on 6-digit NAICS (NAICS6) industries, in order to construct green and brown

employment series, we need employment data at the block-group-NAICS6-year level.

We construct these series from a combination of various data sources.

A.1 Data Sources

Employment at County-NAICS6-Year Level We obtain employment data

at the level of workplace county, NAICS6, and year from two sources. The first is

the Census County Business Patterns (CBP) database, which contains annual em-

ployment data at the geographic-area-industry level in various detail, down to the

county-NAICS6-year level. Because the data are suppressed for most county-NAICS6

series to protect confidentiality, we use an imputed dataset constructed by Eckert et al.

(2021) which uses the non-suppressed CBP data at higher levels of aggregation along

the geographic and industry dimensions to impute the data. We use their imputed

CBP data for 2000 to 2003.

The second source is the BLS Quarterly Census of Employment andWages (QCEW)

database. Similarly to the CBP, the QCEW contains annual employment data at

geographic-area-industry level in various detail, down to the county-NAICS6-year level,

with the data suppressed for most county-NAICS6 series for confidentiality. We im-

plement an imputation procedure developed in Autor et al. (2024), which, similarly to

Eckert et al. (2021), uses the non-suppressed data at higher levels of aggregation to

impute the data. We construct imputed QCEW data for 2004 to 2020.

We take several steps to harmonize the data across 2000 to 2020. First, we concord

all revisions of NAICS6 codes to 2012 NAICS. This was done in Eckert et al. (2021)

for the imputed CBP data by splitting employment equally for NAICS6 that split

into multiple 2012 NAICS6. We do the same for our imputed QCEW data. We also

concord all county FIPS codes to 2010 FIPS, similarly splitting employment equally for

FIPS codes that split into multiple 2010 FIPS. Finally, to harmonize our data series,

we calculate the ratio of county-level employment in our imputed QCEW data to the

imputed CBP data in 2004. We multiply each county-NAICS6 series in the imputed

CBP data for 2000 to 2003 by its county-level ratio.



Employment at Block-Group-NAICS2-Year Level Employment data at

the level of residence block-group, NAICS2, and year are from two sources. The first

is the 2000 Decennial Census from IPUMS (Manson et al. (2024)). The second is the

Census LEHD Origin-Destination Employment Statistics (LODES) Residence Area

Characteristics (RAC) dataset at the block-2-digit-NAICS-year level, which we use for

2002 to 2021. For a small number of states that do not have full data series from 2002

to 2021, we carry backward (forward) the first (last) year of data to 2002 (2021).

To harmonize the data across 2000 to 2020, we concord all block-group and block

FIPS codes to 2010 FIPS, using population weights to apportion the employment data,

and collapse the data at block-group-NAICS2-year level. To harmonize the 2000 Census

data with the LODES data for 2002 to 2021, we first train a regression model:

EmpLODES
bkt = α+ βEmpACS

bkt

where EmpLODES
bkt is employment at the level of block-group b, NAICS2 k, and year t as

measured in the LODES RAC dataset, and EmpACS
bkt is employment as measured in the

American Community Survey (ACS) 5-year estimates dataset. The sample period is

2007 to 2021, when the ACS estimates are available, and we estimate separate models

for each 2-digit NAICS. We then use the estimated models to predict ˆEmp
LODES
bk,2000

based on the observed 2000 Census data, EmpCensus
bk,2000 , and use this predicted LODES

employment measure for 2000.

Commuting Flow Data at Block-Group-County-Supersector-Year Level

We use commuting flow data from the LODES Origin-Destination (OD) dataset, which

measures employment at the level of residence block, workplace block, NAICS supersec-

tor (specifically, the three supersectors are “Goods Producing”, “Trade, Transporta-

tion, and Utilities”, and “All Other Services”), and year, and which is available for

2002 to 2020. We concord block FIPS codes to 2010 FIPS, using population weights

to apportion the employment data, and collapse the data at the level of residence

block-group, workplace county, NAICS supersector, and year.

Green Industries and Industry Share of Green Employment We use a

classification of NAICS6 industries that potentially produce green goods and services,

as well as estimates of the industry shares of employment in each of these industries

that are within green establishments, from the BLS Green Goods and Services (GGS)

survey. The GGS was only conducted for 2010 and 2011; we use the 2011 survey which

is missing data for slightly fewer industries. The survey sample was stratified mostly at



the NAICS4 level, with some highly environmental industries stratified at the NAICS6

level; to avoid bias due to sample stratification, we use only the industry estimates at

NAICS4 level.

A.2 Constructing Green and Brown Employment

We construct green employment at the block-group-year level as follows, where all

employment variables additionally have year t subscripts, omitted for brevity:

GreenEmpb =
∑
i∈G

GreenEmpbi,

GreenEmpbi =
∑

c∈C(b)

Empb,k(i) ×
Empbc,l(i)

Empb,l(i)
×

γj(i) × Empci

Empc,k(i)
.

GreenEmpb is green employment at the level of residence block-group b and year t;

GreenEmpbi is green employment at the level of block-group b and NAICS6 industry

i; G is the set of green industries and γj(i) is the industry share of green employment

for NAICS4 j(i) corresponding to NAICS6 i as described above; and c is a county

and C(b) the set of counties where residents of block-group b work during the sample

period. Empb,k(i) is employment at the level of residence block-group b, NAICS2 k(i)

corresponding to NAICS6 i, which is from the 2000 Census and LODES RAC datasets

as described above. Empbc,l(i) is employment residing in block-group b, working in

county c, in NAICS super-sector l(i) corresponding to NAICS6 i, which is from the

LODES OD dataset as described above; Empb,l(i) =
∑

c∈C(b)Empbc,l(i). When data

are not available for this variable, we assume all residents of the given block-group-

super-sector-year work in the county they reside in. Empci is employment at the level

of workplace county and NAICS6 i, and is from the CBP and QCEW datasets as

described above, and Empc,k(i) =
∑

i∈k(i)Empci.

Note that our construction of green employment relies on the sufficient assumptions

Empbc,l(i)

Empb,l(i)
=

Empbc,k(i)

Empb,k(i)

γj(i) × Empci

Empc,k(i)
=

γbcit × Empbci
Empbc,k(i)

which must be made due to data availability.

We analogously construct brown employment at the block-group-year level as fol-

lows, where all employment variables additionally have year t subscripts omitted for



brevity:

BrownEmpb =
∑
i∈B

BrownEmpbi,

BrownEmpbi =
∑

c∈C(b)

Empb,k(i) ×
Empbc,l(i)

Empb,l(i)
× 1(i ∈ B)× Empci

Empc,k(i)
.

BrownEmpb is brown employment at the level of residence block-group b and year t;

BrownEmpbi is brown employment at the level of block-group b, NAICS6 industry i,

and year t; and B is the set of brown industries, which we define as those involved

in oil and gas extraction, coal mining, and their support activities. Specifically, the

eight industries are “211111 Crude Petroleum and Natural Gas Extraction,” “211112

Natural Gas Liquid Extraction,” “212111 Bituminous Coal and Lignite Surface Min-

ing,” “212112 Bituminous Coal Underground Mining”, “212113 Anthracite Mining,”

“213111 Drilling Oil and Gas Wells,” “213112 Support Activities for Oil and Gas Op-

erations,” and “213113 Support Activities for Coal Mining.” The rest of the variables

and assumptions are as defined previously.

Finally, our analysis uses shares of green and brown employment at the block-group-

year level, so we divide our constructed measures of green and brown employment

by total employment, constructed from the 2000 Census and LODES RAC datasets

described above.

A.3 Constructing Instruments

We construct a shift-share instrument for our share of green employment variable

as follows:

̂GreenEmpbt
Empb,2000

=
∑
i∈G

GreenEmpbi,2000
Empb,2000

× GreenEmpit
GreenEmpi,2000

.

ˆGreenEmpbt is predicted green employment in block-group b and year t; we normal-

ize by dividing by Empb,2000, employment in block-group b in the year 2000. i, G,

GreenEmpbi,2000, and Empb,2000 are defined and constructed the same way as previ-

ously described with the year being 2000. GreenEmpit is green employment in NAICS6

i and year t and is constructed by summing GreenEmpbit over block-groups b.

In our setting, the shares, or exposure weights, of our shift-share instrument are

the
GreenEmpbi,2000

Empb,2000
, and the sum of these shares is not generally equal to one across

block-groups, a potential issue in shift-share IV regressions highlighted by Borusyak,

Hull and Jaravel (2022). We implement the proposed solution in Borusyak, Hull and



Jaravel (2022), which is to control for the sum of shares in our IV regressions. The sum

of shares
GreenEmpbi,2000

Empb,2000
is simply the share of green employment in block-group b

in 2000.

We construct a shift-share instrument for our share of brown employment variable

analogously.



B Additional Figures and Tables



Figure B.1: Map of precinct-level voting patterns in 2020 (from Longuet-Marx (2024)).

0.2 0.4 0.6 0.8
Share of votes for the Democrats by precinct

Notes: The figure shows the Democratic vote share in the 2020 House election for each census block group,
overlaid with congressional district boundaries. Data are as described in Section 2.



Figure B.2: The Relationship Between Environmental Campaign Ideal Points and Vote-
based Ideology Measures

(a) Narrow Environment Definition (b) Broad Environment Definition

Notes: The “narrow” definition uses Comparative Agendas Project (CAP) codes 700 (environment) and
800 (energy). The “broad” definition adds 400 (agriculture), 1000 (transportation), disaster relief (1523),
and hazardous waste in military (1614) along with technology categories (1704,1706, and 1708 (commercial
use of space, telecommunications, and weather forecasting), foreign resource exploitation (1902) as well as
most of 2100 (Public lands, omitting indigenous affairs and dependencies and territories). Ideal points are
obtained following Bateman, Katznelson and Lapinski (2018). The sample correlation with the “narrow”
definition is 0.866 (0.417 among Democrats and 0.333 among Republicans) and with the “broad” definition
is 0.860 (0.421 among Democrats and 0.324 among Republicans).



Figure B.3: Time series of Sample Averages and Projections of Main Independent Variables.
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Notes: Sample average and projections of independent variables using SSP1-2.6 and SSP5-8.5 scenarios
from 2022 to 20250. The vertical dashed line indicates 2020, the last year of our sample. The projections
for jobs come from the BLS Occupational Outlook Handbook.



Figure B.4: Maps showing projections of main independent variables in 2050

(a) Extreme temperature measure 2050 (b) Extreme Precipitation 2050

(c) Brown jobs 2050 (d) Green jobs 2050

Notes: Each panel shows the spatial distribution of our main exogenous variables of interest in 2050, as
defined in Section 2. The extreme temperature and precipitation measures are defined as the number of
days in the year above the historical mean plus two standard deviations. The job projections come from
the BLS Occupational Outlook Handbook. The temperature and weather projections are projections made
under the SSP5-8.5 scenario, which is our preferred scenario.



Figure B.5: Residual Variation in Temperature and Precipitation Shocks after partialling
out for Congressional District x Year fixed effects
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(b) Precipitation Shock

Notes: Each point represents, for each state, the share of the variance of the temperature and precipitation
shock variable after partialling out Congressional District × Year fixed effects.

Figure B.6: The Relationship Between Extreme Temperature and Precipitation and Voter
Turnout
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Notes: Each panel is a binned scatter plot showing precinct-year-level voter turnout as a function of
extreme temperature or precipitation, controlling for block-group and Congressional-district-by-year fixed
effects. Each dot represents 1% of the sample. The x-axis is extreme temperature or precipitation, defined
as number of days in the year above the historical mean plus two standard deviations. The y-axis is the log
of voter turnout in the Congressional election. The red dotted lines are quadratic fits. The sample is
Congressional elections from 2000 to 2020.



Figure B.7: The Relationship Between Average Temperature and Precipitation and Demo-
cratic Vote Margin
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Notes: Each panel is a binned scatter plot showing block-group-year-level Democratic vote margin as a
function of average temperature or precipitation, controlling for block-group and
Congressional-district-by-year fixed effects. Each dot represents 1% of the sample. The x-axis is average
temperature or precipitation. The y-axis is the Democratic vote margin in the Congressional election. The
red dotted lines are quadratic fits. The sample is Congressional elections from 2000 to 2020.



Figure B.8: The Relationship Between Extreme Temperature and Precipitation and Demo-
cratic Vote Margin, controlling only for block-group and year fixed effects
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Notes: As in Figure 2, each panel is a binned scatterplot showing block group-year-level Democratic vote
margin as a function of extreme temperature or precipitation, controlling for block-group and
Congressional-district-by-year fixed effects. Each dot represents 1% of the sample. The x-axis is extreme
temperature or precipitation, defined as number of days in the year above the historical mean plus two
standard deviations. The y-axis is the Democratic vote margin in the Congressional election. The red
dotted lines are quadratic fits. The sample is Congressional elections from 2000 to 2020.



Figure B.9: First Stage Relationships for Green and Brown Jobs
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(a) First Stage for Brown Jobs
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(b) First Stage for Green Jobs

Notes: Each panel is a binned scatter plot showing the first-stage relationship between the shift-share
instruments and brown or green jobs at the precinct-year level. Each dot represents 1% of the sample.
Each binned scatter plot controls for block-group and Congressional-district-by-year fixed effects, extreme
temperature and precipitation as measured by number of days in the year above the historical mean plus
two standard deviations, and a set of controls. The x-axis is the shift-share instrument, which is the
predicted share of jobs in oil, gas, and coal–or the predicted share of green jobs–normalized by total
employment in 2000. The y-axis is the share of jobs in oil, gas, and coal; or the share of green jobs. The
red dotted lines are linear fits. The sample is Congressional elections from 2000 to 2020.



Figure B.10: The Relationship Between Brown and Green Jobs and Democratic Vote Margin
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Notes: Each panel is a binned scatter plot showing block group-year-level Democratic vote margin as a
function of brown or green jobs. Each binned scatter plot controls for block-group and
Congressional-district-by-year fixed effects. Each dot represents 1% of the sample. The x-axis is share of
jobs in oil, gas, and coal; or share of green jobs. The y-axis is the Democratic vote margin in the
Congressional election. The red dotted lines are quadratic fits. The sample is Congressional elections from
2000 to 2020.



Figure B.11: Spatial Heterogeneity in the Impact of Each Shock on Democratic Vote Margin
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(d) Brown Jobs

Notes: Each panel displays the estimated effect of each shock with 95% confidence interval, separately by
Census region. Estimates correspond to the two-way fixed effects specification in column 1 of Table 2,
which includes census block-group and congressional district-by-election fixed effects. Standard errors are
clustered two ways: by block-group and by congressional district-by-election.



Figure B.12: Heterogeneity of Climate Variable Effect by Partisan Difference in Supply-
Shifter.
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Notes: Each panel is a binned scatter plot showing precinct-year-level Democratic vote margin as a
function of brown or green jobs. Each dot represents 1% of the sample. Each binned scatter plot controls
for block-group and Congressional-district-by-year fixed effects and the residuals from a first-stage
regression of brown or green jobs on its shift-share instrument. The x-axis is share of jobs in oil, gas, and
coal; or share of green jobs. The y-axis is the Democratic vote margin in the Congressional election. The
red dotted lines are quadratic fits. The sample is Congressional elections from 2000 to 2020.

Figure B.13: Correlation between candidate campaign ideal point on the environment and
average ideal point of neighboring candidates of same party.
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Notes: Each panel is a binned scatter plot showing the first-stage relationship between candidates
environmental positions and their neighbors’ environmental positioning. Each dot represents 1% of the
sample. The red dotted lines are linear fits. The sample is Congressional elections from 2000 to 2020.
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Figure B.15: Hexagonal-cartogram view of projected congressional-district shifts from 2022
to 2050.
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(a) Change in Democrats’ ideal ideological po-
sition, 2022–2050.
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(b) Change in Republicans’ ideal ideological po-
sition, 2022–2050.
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(c) Change in Democratic vote-share margin,
2022–2050.
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(d) Projected winning party by district in 2050.

Notes: As in Figure 5, each panel shows the projected congressional-district shifts from 2022 to 2050 for
the main outcomes of interest, synthesizing the effect of each exogenous shock. Panel A and B show the
projected changes in candidate positions. Panel C shows the projected change in the Democratic vote
margin. Panel D shows the projected election winner in each congressional district in 2050.



Table B.1: States and Years Present in Sample

State Years in Sample

Alabama 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Arizona 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Arkansas 2000, 2002, 2004, 2006, 2010, 2012, 2014, 2016, 2018, 2020
California 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Colorado 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Connecticut 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Delaware 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Florida 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Georgia 2012, 2014, 2016, 2018, 2020
Idaho 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Illinois 2012, 2014, 2016, 2018, 2020
Indiana 2012, 2016, 2018, 2020
Iowa 2000, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Kansas 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2016, 2018, 2020
Kentucky 2010, 2012, 2014, 2016, 2018, 2020
Maine 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Maryland 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Massachusetts 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Michigan 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Minnesota 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Mississippi 2004, 2006, 2008, 2010, 2012, 2018, 2020
Missouri 2000, 2002, 2004, 2006, 2008, 2010, 2014, 2016, 2018, 2020
Montana 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Nevada 2004, 2006, 2008, 2010, 2018, 2020
New Hampshire 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
New Jersey 2000, 2002, 2004, 2008, 2012, 2014, 2016, 2018, 2020
New Mexico 2000, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
New York 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
North Carolina 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
North Dakota 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Ohio 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Oklahoma 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Oregon 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2018, 2020
Pennsylvania 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Rhode Island 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
South Carolina 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
South Dakota 2008, 2016, 2018, 2020
Tennessee 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Texas 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Utah 2014, 2016, 2018, 2020
Vermont 2006, 2010, 2012, 2014, 2018, 2020
Virginia 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Washington 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
West Virginia 2008, 2010, 2012, 2014, 2016, 2018, 2020
Wisconsin 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020
Wyoming 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020

Notes: States and years included in the sample.
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Table B.7: Structural Parameter Estimates with Control Variables

Name Estimate Std Error Z-value P-value Effects

Democrat’s Supply

λd
temp 0.0018 0.0011 1.6166 0.1060 0.0144

λd
prec 0.0015 0.0014 1.1009 0.2709 0.0098

λd
G -0.1256 0.1114 -1.1279 0.2594 -0.0487

λd
B 0.0252 0.0300 0.8386 0.4017 0.0284

Ωd
log emp 0.2731 0.2211 1.2351 0.2168 0.0749

Ωd
mean ln income all -0.3099 0.1549 -2.0004 0.0455 -0.0809

Ωd
log voting age pop -0.1762 0.2846 -0.6190 0.5359 -0.0364

βd -0.0189 0.0122 -1.5476 0.1217 -0.6050
πd 0.1751 0.0772 2.2689 0.0233 0.0404

Republican’s Supply

λr
temp -0.0008 0.0015 -0.5507 0.5818 -0.0064

λr
prec 0.0005 0.0021 0.2511 0.8018 0.0034

λr
G 0.0962 0.1038 0.9262 0.3543 0.0373

λr
B -0.0101 0.0248 -0.4058 0.6849 -0.0114

Ωr
log emp 0.0538 0.1676 0.3210 0.7482 0.0148

Ωr
mean ln income all -0.4507 0.2274 -1.9818 0.0475 -0.1176

Ωr
log voting age pop -0.0009 0.3196 -0.0027 0.9978 -0.0002

βr 0.0034 0.0014 2.4480 0.0144 0.1092
πr 0.1940 0.0601 3.2296 0.0012 0.0539

District-level Demand

δtemp 0.0826 0.0244 3.3841 0.0007 0.6517
δprec 0.0433 0.0229 1.8874 0.0592 0.2771
δG 0.2295 0.1193 1.9233 0.0545 0.0890
δB -0.3482 0.0919 -3.7886 0.0002 -0.3926
Γlog emp -0.4447 0.0872 -5.1010 0.0000 -0.1220
Γmean ln income all 4.3396 0.3735 11.6197 0.0000 1.1326
Γlog voting age pop -3.3658 0.1673 -20.1210 0.0000 -0.6952
γd 24.0721 12.8451 1.8740 0.0609 8.3754
γr -1.1543 1.0891 -1.0598 0.2892 -0.4960

Notes: This table presents parameter estimates from the structural equations for Democrats’
environmental policy supply, xd

ct; Republicans’ environmental policy supply, xr
ct; and the district-

level Democratic vote share, ȳct. Standard errors (in parentheses) are clustered by congressional
district. z-values and p-values correspond to two-sided tests. The final column (”Marginal
Effects”) reports the change in the outcome-Democrats’ platform in the first panel, Republicans’
platform in the second panel, and Democrats’ vote share (on a 0-100 scale) in the third panel-
resulting from a one-standard deviation increase in the corresponding regressor. Estimation
follows a two-step GMM approach, using instruments Vct, z

d
ct, z

r
ct and weighting by the inverse

variance of the estimated district-by-year fixed effects in the first step.



Table B.8: Placebo Structural Estimation Using Only Cultural Ideal Points

Name Estimate Std Error Z-value P-value Effects

Democrat’s Supply

λd
temp 0.0018 0.0010 1.7908 0.0733 0.0142

λd
prec -0.0015 0.0016 -0.9487 0.3428 -0.0096

λd
G 0.0456 0.0964 0.4729 0.6363 0.0147

λd
B 0.0761 0.0525 1.4495 0.1472 0.0804

βd 0.0000 0.0084 0.0010 0.9992 0.0003
πd 0.0856 0.0508 1.6856 0.0919 0.0264

Republican’s Supply

λr
temp -0.0005 0.0013 -0.4018 0.6878 -0.0042

λr
prec 0.0006 0.0018 0.3703 0.7112 0.0041

λr
G 0.0674 0.1398 0.4823 0.6296 0.0217

λr
B 0.0231 0.0312 0.7418 0.4582 0.0244

βr 0.0051 0.0098 0.5203 0.6029 0.1634
πr 0.1450 0.0561 2.5858 0.0097 0.0367

District-level Demand

δtemp 0.0828 0.0245 3.3789 0.0007 0.6533
δprec 0.0443 0.0231 1.9190 0.0551 0.2789
δG 0.2160 0.1174 1.8389 0.0660 0.0696
δB -0.3562 0.0927 -3.8428 0.0001 -0.3762
γd 2.0919 7.7269 0.2707 0.7866 0.9109
γr -2.7783 8.8367 -0.3144 0.7532 -1.0642

Notes: This table presents parameter estimates from the structural equations for
Democrats’ policy supply (cultural issues excluding environmental issues), xd

ct;
Republicans’ policy supply (cultural issues excluding environmental issues), xr

ct;
and the district-level Democratic vote share, ȳct. Standard errors (in parentheses)
are clustered by congressional district. z-values and p-values correspond to two-
sided tests. The final column (”Marginal Effects”) reports the change in the
outcome-Democrats’ platform in the first panel, Republicans’ platform in the
second panel, and Democrats’ vote share (on a 0-100 scale) in the third panel-
resulting from a one-standard deviation increase in the corresponding regressor.
Estimation follows a two-step GMM approach, using instrumentsVct, z

d
ct, z

r
ct and

weighting by the inverse variance of the estimated district-by-year fixed effects
in the first step.



C Political Competition Over Environmental Pol-

icy

This appendix presents a simple microfoundation for the system of equations esti-

mated in Section 4 of the paper. Our empirical model is more general than the stylized

model of political competition presented here, but the economic intuition, identifica-

tion challenges, and sources of variation used to estimate the empirical model, are all

captured by the simple model.

We consider an election between two candidates, D and R. There is a continuum

of voters, indexed by i, with their distribution described by the density function f(i).

Each voter has an ideal policy point in a multi-dimensional policy space, denoted by the

vector θi. A voter’s utility from a given policy platform x decreases with the squared

Euclidean distance between the platform and their ideal point:

ui(x) = −∥x− θi∥2

A voter chooses Candidate D if the total utility from D exceeds that from R. The com-

parison includes policy utility, a candidate-specific valence term, and a voter-specific

idiosyncratic shock.

C.1 Candidates and Voting Probability

CandidatesD andR simultaneously choose policy platforms xD and xR. We assume

Candidate D has a net non-policy valence advantage over Candidate R, denoted by

δ̄. This term is known to all agents. The utility for voter i from Candidate D is

ui(xD)+ δ̄+ϵi, and from Candidate R is ui(xR). The term ϵi is an idiosyncratic shock,

assumed to be drawn from a uniform distribution with mean 0 and density ϕi. The

parameter ϕi measures the sensitivity of voter i to policy changes; a high ϕi denotes a

swing voter.

The probability that voter i votes for Candidate D is:

pi(xD,xR) = Pr(ϵi > ui(xR)− ui(xD)− δ̄) =
1

2
+ ϕi[ui(xD)− ui(xR) + δ̄]

Candidate D’s aggregate expected vote share, ΠD, is the integral over all voters:

ΠD =

∫
pi(xD,xR)f(i) di.

Candidates care about both winning and the policy they advocate for during a

1



campaign. Each candidate J ∈ {D,R} has an ideal policy point, θJ = θ̃J + ζJzJ

where θ̃ is the personal preference of the candidate and z the local party delegation

preferences, with a relative weight to the party given by ζ ∈ [0, 1]. We assume the

candidate’s objective function VJ is a weighted sum of their expected vote share (office

motivation) and their proximity to their ideal policy (policy motivation), with the

latter being a composite of both personal and party factors. The weight λJ ∈ [0, 1]

captures the overall importance of policy goals.

For Candidate D, the objective is:

VD(xD) = (1− λD)ΠD − λD∥xD − θD∥2

and for Candidate R, the objective is (since ΠR = 1−ΠD):

VR(xR) = (1− λR)(1−ΠD)− λR∥xR − θR∥2.

C.2 Equilibrium Platforms

We find the equilibrium platforms by solving each candidate’s optimization prob-

lem, taking the other’s platform as given. A Nash Equilibrium is a pair of platforms

(x∗
D,x

∗
R) where neither candidate has an incentive to deviate and all voters vote for

their preferred candidate and voters choose optimally.

Candidate D chooses xD to maximize VD. Let us analyze the k-th dimension of

the policy vectors, say the environmental policy dimension. The first-order condition

for a policy dimension xDk sets:.

∂VD

∂xDk
= (1− λD)

∂πD
∂xDk

− ∂

∂xDk

λD

∑
j

(xDj − θDj)
2

 = 0

= (1− λD)
∂πD
∂xDk

− 2λD(xDk − θDk) = 0

2



The partial derivative of the vote share ΠD is:

∂ΠD

∂xDk
=

∫
ϕi

∂ui(xD)

∂xDk
f(i) di

=

∫
ϕi

∂

∂xDk

−
∑
j

(xDj − θij)
2

 f(i) di

=

∫
ϕi[−2(xDk − θik)]f(i) di

= −2

(
xDk

∫
ϕif(i) di−

∫
θikϕif(i) di

)

Let us define the average policy responsiveness ϕ̄ =

∫
ϕif(i) di and the weighted-mean

voter ideal point θ̄ϕk =

∫
θikϕif(i) di

ϕ̄
. Then:

∂ΠD

∂xDk
= −2ϕ̄(xDk − θ̄ϕk )

Substituting this back into the FOC:

(1− λD)[−2ϕ̄(xDk − θ̄ϕk )]− 2λD(xDk − θDk) = 0

xDk[(1− λD)ϕ̄+ λD] = (1− λD)ϕ̄θ̄
ϕ
k + λDθDk

x∗Dk =
(1− λD)ϕ̄θ̄

ϕ
k + λDθDk

(1− λD)ϕ̄+ λD

Candidate R chooses xR to maximize VR, which is equivalent to minimizing (1 −
λR)ΠD + λR∥xR − θR∥2. The solution gives:

x∗Rk =
(1− λR)ϕ̄θ̄

ϕ
k + λRθRk

(1− λR)ϕ̄+ λR
.

The equilibrium policy platforms are given by the solutions to the FOCs. In vector

notation and making explicit the components of θJ we have:

x∗
D =

(1− λD)ϕ̄θ̄
ϕ + λD

(
θ̃D + ζDzD

)
(1− λD)ϕ̄+ λD

(9)

x∗
R =

(1− λR)ϕ̄θ̄
ϕ + λR

(
θ̃R + ζRzR

)
(1− λR)ϕ̄+ λR

(10)

Note that policy platforms diverge as long as candidates have different ideal points

3



(θD ̸= θR) and care about policy (λD, λR > 0). Each candidate’s platform is a compro-

mise, a weighted average of the electoral center (θ̄ϕ), their personal ideal point (θ̃J),

and the local party preferences (zJ). These equations are a possible (but not the sole)

microfoundation of equations (4) and (5) in the text.

C.3 Equilibrium Vote Shares

With divergent platforms, the election outcome depends on both valence and policy

positioning. The equilibrium vote share for Candidate D is:

Π∗
D =

∫ (
1

2
+ ϕi[ui(x

∗
D)− ui(x

∗
R) + δ̄]

)
f(i) di

=
1

2
+ δ̄

∫
ϕif(i) di+

∫
ϕi[ui(x

∗
D)− ui(x

∗
R)]f(i) di

=
1

2
+ δ̄ϕ̄+

∫
ϕi[∥x∗

R − θi∥2 − ∥x∗
D − θi∥2]f(i) di

We can simplify the policy-dependent term in the integral:∫
ϕi[∥x∗

R − θi∥2 − ∥x∗
D − θi∥2]f(i) di

=

∫
ϕi[(∥x∗

R∥2 − 2x∗
R · θi + ∥θi∥2)− (∥x∗

D∥2 − 2x∗
D · θi + ∥θi∥2)]f(i) di

=

∫
ϕi[∥x∗

R∥2 − ∥x∗
D∥2 − 2(x∗

R − x∗
D) · θi]f(i) di

= (∥x∗
R∥2 − ∥x∗

D∥2)ϕ̄− 2(x∗
R − x∗

D) · (ϕ̄θ̄ϕ)

= ϕ̄[∥x∗
R − θ̄ϕ∥2 − ∥x∗

D − θ̄ϕ∥2]

This gives us the vote share defining our demand function:

Π∗
D =

1

2
+ ϕ̄δ̄︸︷︷︸

D Valence Advantage

+ ϕ̄
[
∥x∗

R − θ̄ϕ∥2 − ∥x∗
D − θ̄ϕ∥2

]
︸ ︷︷ ︸

D Policy Advantage

(11)

or

y∗ = 2 ∗ ϕ̄δ̄︸︷︷︸
D Valence Advantage

+2 ∗ ϕ̄
[
∥x∗

R − θ̄ϕ∥2 − ∥x∗
D − θ̄ϕ∥2

]
︸ ︷︷ ︸

D Policy Advantage

(12)

The vote share is determined by three components: a baseline of 0.5, a bonus from

non-policy valence for D, and a policy platform advantage that rewards the candidate

whose platform is closer to the electoral center of gravity (θ̄ϕ) and the equation for y∗

is a possible (but not the sole) microfoundation of equation (8) in the text.
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Furthermore, if θD, θR, θ̄
ϕ, or δ̄ are all functions of (can all be influenced by) the

weather and jobs changes V in our empirical analysis, this model shows why controlling

for θD and θR is important for recovering the direct effect of shocks on voter preferences,

given by
dΠD

dθ̄ϕ
×dθ̄ϕ)

dV
, in equation (3), which is why the within-district-by-year variation

is important for recovering the effect of demand.

Similarly, the supply equations show that controlling for θ̄ϕ (e.g. voter demand) is

important for recovering the direct effect of climate on party ideal points
dx∗

J

dθJ
× dθJ

dV
.

The demand model makes an auxiliary prediction, which is that demand shocks to

θ̄ϕ will interact with θR − θD due to the nonlinearity implied by the distance function.

While we do not observe θ̃R and θ̃D directly, our identification, through the lens of the

model, assumes that the instruments zD and zR, operate solely through θD and θR,

once demand is controlled for, and we can use this variation to test for the predicted

heterogeneity.

The model further clarifies that candidate ideal points (θJ) are not the observed

environmental policy positions of the candidates (xJ), which are endogenous functions

of both voter demand and candidate partisan preferences (the ideal points). For this

reason, we use our supply-side instruments to form exogenous shifters for the candidate

ideology.

D Proof of Identification

This appendix establishes point identification of the structural parameters in the

joint demand–supply model for climate-policy platforms (see Section 4 of the main

text). Our proof does not invoke second-order moment conditions; imposing those

conditions renders the system over-identified.

D.1 Setup and key equations

Our political supply equations (see equations (4) and (5) in the main text) can be

written as:

xdct = λd V̄ct + βd ȳct + πd zdct + ωd
c + ζdt + ηdct, (13)

xrct = λr V̄ct + βr ȳct + πr zrct + ωr
c + ζrt + ηrct, (14)

where

• xdct and xrct are the policy positions (e.g., climate platforms) of the Democratic

5



and Republican candidates in congressional district c at election year t;

• V̄ct is the (population-weighted) average of exogenous district-level characteris-

tics, such as weather shocks or green/brown employment share;

• ȳct is the (population-weighted) average of Democratic vote margins in district c

(i.e. the expected support) at time t;

• zdct and zrct are exogenous party-specific shifters (e.g., local party trends) that

affect only the Democrat’s or the Republican’s platform, respectively;

• ωp
c and ζpt are district and time fixed effects (indexed by party p ∈ {d, r});

• ηpct are idiosyncratic errors.

On the demand side, aggregating equation (6) from the main text to the district

level (as in (8)), we have:

ȳct = δ V̄ct + γd xdct + γr xrct + νc + κt + ξct, (15)

where δ captures the direct impact of exogenous covariates V̄ct on vote margins, γd

and γr measure how the Democrat’s and Republican’s platforms shift the average

Democratic vote margin, νc and κt are district and time fixed effects, and ξct is an

error term.

We are interested in identifying the structural parameters:

{
βd, βr, γd, γr, πd, πr, λd, λr, δ

}
.

Below, we show how these parameters can be uniquely recovered from appropriate

first-order (linear) moment conditions, which underlie the GMM approach detailed in

Section 4 of the main text.

D.2 Reduced-Form Relationships

Recall the structural equations for our demand and supply system at the district

level:

ȳct = δ V̄ct + γd xdct + γr xrct + νc + κt + ξct,

xdct = λd V̄ct + βd ȳct + πd zdct + ωd
c + ζdt + ηdct,

xrct = λr V̄ct + βr ȳct + πr zrct + ωr
c + ζrt + ηrct.

6



Here, ȳct is the average Democratic vote margin in district c, and xdct and xrct denote the

platforms of the Democratic and Republican candidates, respectively. The variables

V̄ct are exogenous district-level covariates, and zdct and zrct are party-specific policy

shifters. We collect the district and time fixed effects into {νc, κt, ωd
c , ω

r
c , ζ

d
t , ζ

r
t } and

the stochastic terms into {ξct, ηdct, ηrct}.
Because xdct and xrct each depend on ȳct (which itself depends on xdct and xrct), we

substitute the demand equation into the supply equations and collect terms. Denote

Ξ =
1

1 − βd γd − βr γr
, αct = νc + κt, ρdct = ωd

c + ζdt , ρrct = ωr
c + ζrt ,

Λct = ξct + γd ηdct + γr ηrct.

Then we can write the reduced-form expressions as:

ȳct = Ξ
(
αct + γdρdct + γrρrct

)
+ Ξ

(
δ + γd λd + γr λr

)
V̄ct

+
(
Ξ γd πd

)
zdct +

(
Ξ γr πr

)
zrct +

(
ΞΛct

)
,

xdct =
[
ρdct + βd Ξ

(
αct + γdρdct + γrρrct

)]
+

[
λd + βd Ξ

(
δ + γdλd + γrλr

)]
V̄ct

+
[
βd Ξ γd πd + πd

]
zdct + βd

(
Ξ γr πr

)
zrct +

[
βd ΞΛct + ηdct

]
,

xrct =
[
ρrct + βr Ξ

(
αct + γdρdct + γrρrct

)]
+

[
λr + βr Ξ

(
δ + γdλd + γrλr

)]
V̄ct

+ βr
(
Ξ γd πd

)
zdct +

[
βr Ξ γr πr + πr

]
zrct +

[
βr ΞΛct + ηrct

]
.

To see how the system parameters can be recovered from simple linear regressions,

consider regressing each district-level outcome on the exogenous instruments V̄ct, z
d
ct,

and zrct, partialling out district and year fixed effects. We define the following reduced-

form slopes:

• From the regression of ȳct on (V̄ct, z
d
ct, z

r
ct) with district and year fixed effects, let

ky,V̄ ky,zd and ky,zr

denote the estimated coefficients on V̄ct, z
d
ct and zrct, respectively.

• From the regression of xdct on (V̄, zdct, z
r
ct) with district and year fixed effects, let

kxd,V̄ kxd,zd and kxd,zr

7



denote the estimated coefficients on V̄ct, z
d
ct and zrct, respectively.

• Similarly, from the regression of xrct on (V̄ct, z
d
ct, z

r
ct) with district and year fixed

effects, let

kxr,V̄ kxr,zd and kxr,zr

denote the estimated coefficients on V̄ct, z
d
ct and zrct, respectively.

Reduced-Form Expressions. From the algebraic derivations here, we obtain:

kxd,V̄ = λd + βdΞ
(
δ + γdλd + γrλr

)
kxd,zd = βdΞγdπd + πd = Ξ

[
πd − πd βr γr

]
,

kxd,zr = Ξ
[
πr βd γr

]
,

kxr,V̄ = λr + βrΞ
(
δ + γdλd + γrλr

)
kxr,zd = Ξ

[
πd βr γd

]
,

kxr,zr = βrΞγrπr + πr = Ξ
[
πr − πr βd γd

]
,

ky,V̄ = Ξ(δ + γdλd + γrλr)

ky,zd = Ξ γd πd,

ky,zr = Ξ γr πr,

where

Ξ =
1

1 − βd γd − βr γr
.

Hence, all reduced-form slopes {kxd,V̄, kxd,zd , kxd,zr , kxr,V̄kxr,zd , kxr,zr , ky,V̄, ky,zd , ky,zr}
are functions of the structural parameters

{
βd, βr, γd, γr, πd, πr, λd, λr, δ

}
.

D.3 Recovering the Structural Parameters

Solving these equations for the unknowns structural parameters yields a unique

solution (provided that Ξ is well-defined). In particular:

βd =
kxd,zr

ky,zr
, βr =

kxr,zd

ky,zd
,

γd = −
kxr,zd ky,zr − kxr,zr ky,zd

kxd,zd kxr,zr − kxd,zr kxr,zd
, γr =

kxd,zd ky,zr − kxd,zr ky,zd

kxd,zd kxr,zr − kxd,zr kxr,zd
,

πd =
kxd,zd ky,zr − kxd,zr ky,zd

ky,zr
, πr = −

kxr,zd ky,zr − kxr,zr ky,zd

ky,zd
.

8



Similarly, the expressions for λd and λr are:

λd = kxd,V̄ −
ky,V̄kxd,zr

ky,zr

λr = kxr,V̄ −
ky,V̄kxr,zd

ky,zd

and finally the expression of δ can be expressed as:

δ = ky,V̄(1− βdγd − βrγr)− γdλd − γrλr

Hence, using the direct reduced-form coefficients

{kxd,V̄, kxd,zd , kxd,zr , kxr,V̄, kxr,zd , kxr,zr , ky,V̄, ky,zd , ky,zr}

we can recover the entire set of structural demand and supply parameters{
βd, βr, γd, γr, πd, πr, λd, λr, δ

}
.

In the estimation presented in the main text, we extend this point-identifiable model

in two ways. First, given that we observe voting margins, climate shocks, and employ-

ment shifts at a more granular block level, we employ block-group-level regression to

estimate the parameters δ in the first stage. This approach yields greater precision

compared to relying solely on district-level variations. Second, we impose additional

second-order moment conditions to restrict the dependence structure between the de-

mand side and the idiosyncratic errors on both parties’ supply sides. These two exten-

sions enhance the precision of the estimation and render the system over-identified.
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