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Abstract

This paper presents a model and an automated methodology for assessing gains
from network distortions in cities. Distortions arise from excluding tra¢ c along cer-
tain routes. Distortions degrade network connectivity, but can be paradoxically useful
for congestion amelioration. We show that such distortions are quantitatively large,
increasingly pervasive in larger cities, and potentially very valuable. The results ulti-
mately support the view that Braess�(1968) paradox is not just a theoretically inter-
esting possibility, but a widespread feature of city road networks.
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I. Introduction

This paper o¤ers two main contributions. First, we present an empirical methodology

based on network theoretic foundations for studying the microstructure of city road networks.

Second, we �nd strong empirical relationships between population, network structure, and

congestion costs. These �ndings provide guidance in restricting the set of ambiguous theo-

retical predictions that we report.

Concerning the network structure, the paper shows that there is an intuitive, but over-

looked connection between the way city tra¢ c plans are organized and Braess�(1968) seminal

counterintuitive observation that reducing the number of links in a network may actually

ameliorate its equilibrium level of congestion1. City planners systematically close o¤ roads

and directions of �ow to abate congestion at the cost of lower network connectivity. By

any standard such approach is more frequently employed than congestion pricing and more

readily implementable than changes in the provision of lane kilometers for any type of roads.

The paper assesses the empirical prevalence of such distortions and binds their economic

value in transportation networks.

Congestion costs are economically large. The Texas Transportation Institute assesses

total congestion costs in the United States at $115 billion in 2009 (based on wasted time and

fuel, excluding the environmental externalities of the 3:9 billion gallons of wasted fuel), 58

percent of which stem from very large urban areas. Couture, Duranton and Turner (2012)

provide an even larger economic assessments ($141 billion in 2008). This motivates our

interest.

We model a city as a directed graph and describe the time delay of going through the

network (latency) as a function of the �ow of agents routing through its arrows. We de�ne a

(city) planner�s problem as �nding a subgraph minimizing the aggregate congestion costs of

1Braess (1968) presents an example of how an increase in the connectivity of a network (e.g. adding
a new link) may increase total tra¢ c congestion in equilibrium. This counterintuitive result is commonly
referred to as Braess�paradox. This paradoxical result occasionally also surfaces in other forms, such as the
"fundamental law of road congestion" (i.e. increasing road supply does not ameliorate congestion levels).
See Duranton and Turner (2011).
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sel�shly-routing agents moving through the network. This matches the empirical regularity

that not all sites within a city are accessible by tra¢ c and that the accessible vertex set is

a very deliberate subset of the overall city network. We study the equilibrium properties of

such optimal subgraph. Within our framework, tra¢ c �ow restrictions in the subgraph (e.g.

one-way tra¢ c and other forms of path distortion) are a direct expression of Braess�paradox

in networks. In other words, tra¢ c restrictions are interpretable as pruning arrows from a

transportation network to abate latency.2

Placing theoretical structure on the data, we quantify the endogenous congestion-minimizing

distortions in city transit networks in a large sample of United States and Italian cities,

to show the increasing pervasiveness of distortions in larger cities and to place reasonable

bounds on their economic value. Importantly, all this is achieved sidestepping the need for

detailed micro tra¢ c and speed data (hundreds of millions of roads/time data points, often

noisily measured), a major obstacle for the empirical analysis of congestion beyond samples

of very limited representativeness.3 To this goal, we introduce a novel automated search al-

gorithm on a widely available Internet mapping application4. The algorithm �rst generates

source-target routes within the network and then samples from the empirically implemented

viable subgraph (i.e. the actual tra¢ c plan). For a large sample of US and Italian cities we

estimate the endogenous congestion-minimizing distortions of transit networks by comparing

restricted versus unrestricted routes within the city. An average US daily commute is made

about 10 percent longer in terms of its distance as a result of network pruning. We also

show empirically that, as population increases, cities display larger distortions within their

networks. To the best of our knowledge, these stylized facts are new.

From a theoretical standpoint, the paper is related to a growing computer science liter-

ature focused on ine¢ ciencies arising within sel�shly routing networks. Our model builds

heavily on the work of Roughgarden and Tardos (2002) and Roughgarden (2002), which in

2See Section 2 for further discussion.
3For a critical discussion, see Fosgerau and Small (2010). The authors also present an application to

Danish freeways with (exceptionally) clean data.
4Our application of choice is Google Maps, available at http://maps.google.com/.
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turn leverages on the voluminous transportation science literature on tra¢ c equilibria stem-

ming from Wardrop (1952). Our contribution should not be seen as theoretical though, but

in tightly mapping such abstract models into data. The paper is related to the vast litera-

ture on Braess�paradox in networks5 and proposes one of its few applications to real road

networks in a large sample of cities. Indeed, the prevalence of Braess�paradox in transporta-

tion networks is neither theoretically obvious 6 nor one that has little economic implications,

given its potentially large economic value.

From an empirical standpoint, we follow the same path as Lucca and Trebbi (2009)

in presenting theoretically-grounded information retrieval algorithms from web sources de-

signed to quantify hard-to-measure concepts in an automated and undirected fashion. This

paper is related to a vast literature on agglomeration, spanning industrial organization, in-

ternational trade, urban geography, urban planning, regional science, and urban economics.

The number of important contributions in this area is too large for a comprehensive review

here. Fujita, Krugman, and Venables (1999) and Fujita and Thisse (2002) provide excel-

lent overviews of the economic geography literature, while Anas, Arnott, and Small (1998)

and Small and Verhoef (2007) provide accurate reviews of the economics of urban spatial

structure and transportation. More closely related is the economic literature on congestion

and hypercongestion costs (Dewees, 1977; Arnott and Small, 1994; Verhoef, 2001; Small and

Chu, 2003; Arnott, Rave and Schöb, 2005; Duranton and Turner, 2011; Couture, Duranton

and Turner, 2012) to which this paper contributes by presenting a model of urban networks

matched to micro data. The paper is also related to the literature on quantifying urban

network structure and sprawl.7 Relative to this line of research, mostly focused on entropy

and dispersion measures, our approach di¤ers in that we focus on endogenous distortions

imposed on the network structure. Our contribution to this literature is dual, as we present

5Bounding the pervasiveness of Braess paradox in networks is studied, among others, by Lin, Roughgar-
den, and Tardos (2004) and Lin, Roughgarden, Tardos, and Walkover (2009).

6For a discussion see Frank (1981); Valiant and Roughgarden (2010); Chung and Young (2010).
7Examples include Gordon, Kumar, and Richardson (1989), Tsai (2005), Xie and Levinson (2006), Burch-

�eld et al. (2006).
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both new automated measures targeted at quantifying city structure and an algorithm which

substantially improves on the small scale limiting previous studies.8

The work is organized as follows. Section 2 presents a model describing the city and the

main theoretical results in terms of congestion and agglomeration costs. Section 3 shows

how to link the theoretical representation of the network and the empirical city structure.

Section 4 presents the mapping algorithm and data. Section 5 reports our main empirical

results. Section 6 concludes and discusses future applications.

II. Model

We model a city as a directed acyclic graph C = (V;A) with vertex set V , indicating sites

within the city, and arrow set A. The graph displays i = 1; :::; k source-target vertex pairs

si� ti and multiple paths through C connecting each pair. We do not impose restrictions on

C, so the model caters to monocentric or multicentric, sprawling or compact macro urban

structures. This particular network representation and the analysis for sel�sh-routing �ows

are due to Roughgarden and Tardos (2002) and Roughgarden (2002, 2006).

We assume that the city population, N , is located at the sources s1; :::; sk each with

subpopulation shares w1; :::; wk,
P

iwi = 1.9 We do not focus on the endogenous spatial

equilibrium and take the location decision as predetermined. While theoretically possible to

relax this assumption, unavailability of systematic data on the value of targets ti for di¤erent

city population subgroups (necessary to compute payo¤s in location trade o¤) would make

any empirical validation unfeasible.

Our location assumption is realistic in the case of short-term considerations (hence, our

model could be considered complementary to long-run models of endogenous residential

choice) or in instances where location decisions are driven more by amenities at si (school

quality, local public goods, etc.) than by considerations on a speci�c commute si � ti. In
8For instance, Youn, Gastner, and Jeong, (2008) present an empirical analysis of Braess paradox in a

limited sample of 246 roads in Boston, Massachusetts.
9For tractability individuals do not locate on a non-source, non-sink vertex in the network.
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this latter sense, Quinet and Vickerman (2004, p.50) conclude that �empirical studies shed

further light on the theoretical analyses in suggesting that transport constitutes an important

factor, but one which is far from the sole determinant, in the location decision of activities.�10

Let us de�ne ri the total tra¢ c traveling on si � ti, that is the expected number of

agents making the si� ti trip per time period11, the input tra¢ c vector �!r = [r1; :::; rk]0, andP
i ri = r the total tra¢ c rate in C. For example, we may consider si being a residential

suburb, ti a location in the central business district of the city, and si � ti the commute to

work for ri individuals out of the total ni = wiN residing at si. De�ne pi the per period

probability that an individual in ni has to undertake trip si � ti.12 For tractability we will

assume that these events are independent across individuals, so that ri = pini > 0.13 Input

tra¢ c rates are taken as given in what follows, while Appendix B presents a generalization

of the model allowing endogenous tra¢ c demand �!r .

For given origin-destination pair si � ti, also called a commodity, we allow individuals

to sort through di¤erent paths connecting si and ti. Call �Ci the (non-empty) set of paths

connecting si and ti in C, and f� the �ow on path � 2 �Ci . De�ne �C = [i�Ci . A �ow

f : �C ! R+ is called feasible if
P

�2�Ci
f� = ri for all i. Let us indicate with fa the �ow on

arrow a 2 A, so that fa =
P

�:a2� f�.

We assume that the time necessary to travel along arrow a is described by a latency

function la(fa) with la : R+ ! R+, nonnegative, non-decreasing, continuous, and semi-convex

in the tra¢ c �ow along arrow a.14 Non-decreasing and continuous latency functions la(:)

10For the case of highways, the FHWA states that �Recent empirical studies conducted in Ohio and
North Carolina indicate that local patterns of population growth (measured at the Census Tract level) are
not highly correlated with increases in highway capacity.�See Hartgen, D.T. (2003a, 2003b).
11For the following theoretical analysis a speci�c assumption for time interval length is not necessary.

However one can consider a day a reasonable reference period. In the empirical analysis, daily trips are
sampled over one year periods.
12See Arnott, De Palma, and Lindsey (1993) for a structural model were endogenous departure decisions are

modeled explicitly and Vickrey (1969) for an earlier seminal contribution. However, the network considered
by Arnott, De Palma, and Lindsey (1993) is stark, as it includes a two vertex graph with a single bottleneck.
13For the following theoretical analysis this assumption is immaterial. For the empirical application the

linear dependence of tra¢ c rates on population within the network should be considered a special case. We
discuss it within the empirical methodology section.
14Semi-convexity is a weaker assumption than convexity, in particular if la(x) is semi-convex, then xla(x)

is convex.
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are standard in the tra¢ c routing literature (Roughgarden, 2002) and convexity is routinely

employed in empirical analysis by the US Federal Highway Administration (FHWA) as well

as in the theoretical literature (e.g. ; Chen and Kempe, 2007; Acemoglu and Ozdaglar,

2007).

Given a network C, a tra¢ c rate through the network �!r and set of latency functions l, we

indicate the total latency costs of a �ow f in C as L(f) =
P

a2A la(fa)fa =
P

�2�C l�(f)f�,

where the latency on path � is l�(f) =
P

a2� la (fa).

A. Optimal and Nash Flows

a. Optimal Flows For graph C, tra¢ c rate �!r , and latency functions l, Roughgarden

and Tardos (2002) de�ne a �ow f � that minimizes total network latency an optimal �ow.

Particularly, they show that an optimal �ow solves the following nonlinear program:

Min
X
a2A

la(fa)fa

s:t:
X
�2�i

f� = ri 8i(1)

fa =
X

�2�:a2�
f� 8a 2 A

f� � 0 8� 2 �C :

Under our assumptions on l, program (1) is convex and admits one feasible global optimum

f �. The minimum-latency �ow exists and is unique. We can think of f � as the solution that

a city planner able to fully and costlessly direct tra¢ c �ows through C would implement.

Intuition would suggest L (f �) be monotonically non-decreasing in tra¢ c rates, which

the following proposition con�rms.

propositionf f � and f �0 are feasible optimal �ows for (C;�!r ; l) and (C; (1 + 
)�!r ; l) re-

spectively, with 
 > 0, then L (f �) � L (f �0).

Proof. In Appendix.
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Note that in Proposition 1 (1 + 
)�!r indicates a scalar multiplication, that is we are

increasing proportionally tra¢ c inputs at every source si. Although restrictive, it will be-

come clear below that focusing on this type of tra¢ c increments substantially facilitates the

tractability of the analysis.

b. Nash Flows It is possible to extend the analysis to decentralized solutions, and char-

acterize the �ow f at a Nash equilibrium in the triple (C;�!r ; l) : Nash equilibria for this

problem are reasonable approximations to individual behavior in presence of atomistic, self-

ish agents endogenously routing through the network (Roughgarden, 2002). Such agents

fully incorporate in their decisions the latency of each arrow when choosing a path (picking

the minimum-latency path), but will not incorporate in their decisions the additional conges-

tion externality they bring to that speci�c �ow. In transportation science this is commonly

referred to as the Wardrop (1952) equilibrium problem for urban road networks.

de�nition�ow f is a Nash equilibrium �ow if and only if l�1 (f) � l�2 (f), for every �ow-

carrying path �1 2 �Ci and every path �2 2 �Ci , for every i = 1; :::; k.

If a �ow f is a feasible Nash �ow, then any two si� ti paths �1; �2 2 �Ci carrying positive

�ow must have the same latency l�1 (f) =
P

a2�1 la(fa) = l�2 (f) = `i. This further implies

L(f) =
P

i `iri.

Beckmann, McGuire, and Winsten (1956) and Roughgarden and Tardos (2002) show the

following existence and uniqueness result, whose proof we omit for brevity:

propositiononsider a triple (C;�!r ; l) with l continuous and non-decreasing: (a) (C;�!r ; l)

admits a feasible Nash equilibrium �ow f . (b) If f and �f are feasible Nash �ows, then

L(f) = L( �f):

For given triple (C;�!r ; l), a Nash �ow f will generally not achieve minimum latency,

that is L(f) � L(f �). Agents sel�shly routing through the network fail to incorporate the

negative externality they induce upon each other15. This results in the possibility of some

15For an early discussion see also Walters (1961).
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counterintuitive outcomes in tra¢ c networks which we now explore.

We begin by deriving a useful monotonicity result for Nash �ows with respect to tra¢ c

inputs. We show that proportional tra¢ c increases in multicommodity networks (k � 1)

guarantee higher latency:

propositionf f and f 0 are feasible Nash �ows for (C;�!r ; l) and (C; (1 + 
)�!r ; l) respec-

tively, with 
 > 0, then L(f) � L(f 0).

Proof. In Appendix.

The result that increased tra¢ c should increase total congestion at Nash equilibrium may

appear obvious, but it is not. To the contrary, equilibrium congestion may actually decrease

when the overall tra¢ c input in a network increases. Fisk (1979) provides an example where

a tra¢ c demand�s increase along one origin-destination (O-D) pair reduces total latency in

the network. Figure 1 modi�es such example allowing input tra¢ c increases in all O-D�s.

Total congestion falls in this case as well. The intuition behind this counterintuitive result

is that an increase in the overall tra¢ c input may not necessarily increase latency on a

speci�c edge. Indeed, there are instances in which the use of an edge is reduced when tra¢ c

input increases, as for edge (b; c) in Figure 1. General results for arbitrary vectors of tra¢ c

inputs�increments are thus not available, but some advancements have been made in the

literature. An increase in the tra¢ c input on an O-D, holding other inputs constant, is

proven to increase the latency of that speci�c origin-destination16, although positive changes

in demand in all O-Ds do not guarantee higher congestion. The reason why proportional

increases in demand are sure to induce monotonicity is based on the fact that, in general,

one can only prove that the average latency of an origin-destination pair weighted by its

change in demand is increasing (Dafermos and Nagurney, 1984). Proportional increases

guarantee that the average O-D latency weighted by the level of demand behaves in the

16Hall (1978) proves that, under some symmetry assumptions, each source to target latency `i is a monotone
nondecreasing function of ri, for ri > 0, when all other tra¢ c rates rj , j = 1; 2; :::; k, j 6= i are held constant,
using sensitivity analysis for convex programs. This result is extended to asymmetric cases in Dafermos and
Nagurney (1984). Lin, Roughgarden, Tardos, and Walkover (2009) prove a monotonicity result in a single
commodity network (k = 1) using a direct combinatorial proof.
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same way17. Proposition 3 should be viewed as providing a restrictive, but tractable case for

useful comparative statics18.

B. Optimal Network Design

For given triple (C;�!r ; l), a reasonable representation of a city planner�s problem is

unlikely to be well described by (1), due to the non-trivial costs of assigning agents to

speci�c routes in a directed fashion19 or to the cost of optimally taxing each speci�c edge

in the graph to internalize marginal social costs20. In practice, city planners aim at �nding

restrictions on accessible vertices that allow reductions in latency costs. More formally, the

problem is to �nd the subnetwork M of C, over which agents sel�shly route themselves,

displaying the lowest latency at Nash equilibrium. For given triple (C;�!r ; l), the problem

can be represented as the following network design program:

Min
~M � C

fL(h)g(2)

s:t: �
~M
i 6= ?; 8i

h is a feasible Nash �ow for
�
~M;�!r ; l

�

For every subgraph ~M with rate �!r and latency functions l there is a unique Nash �ow, hence

(2) admits a solution. However, �nding the minimum-latency subnetwork M in problem (2)

is NP-hard even in single commodity settings (i.e. with a single source-target pair), as

proven by Roughgarden (2006), the �rst to introduce this problem in theoretical Computer

Science.21 A solution M to (2) exists. In the remainder of this section and for our empirical

17The level of demand is what matters for total congestion comparison. It is precisely a little gain on a
high-demand O-D that drives Fisk�s paradox for instance.
18Other applications employing such type of proportional increases include Roughgarden (2002) and

Roughgarden and Tardos (2002) in their bicriteria results.
19Randomizations based, for instance, on licence license plate numbers are not uncommon anti-congestion

policies used to direct �ows, but what we emphasize here is that the main instrument for congestion abate-
ment available to city planners is based on restrictions on access to certain vertices of graph C.
20See Walters (1961).
21For linear latency functions Cole, Dodis, Roughgarden (2006) prove that taxes on arrows can also be used

to improve total latency in the network and they are equally e¢ cient as arrows�removal. For general latency
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analysis we will assume that it is known to the planner.

As further discussed in the following section, our analysis will take city structure (C;�!r ; l)

as given and perform comparative statics on the optimal subnetwork mapM with respect to

N . In the empirical analysis we will discuss how the actual city structure can be represented

by (C;�!r ; l) and how the empirical transit restrictions approximate (M;�!r ; l).

A comment is in order here. The idea of decreasing aggregate latency by reducing the

number of available arrows within a network may appear prima facie counterintuitive. A

more connected network should guarantee lower congestion. However, this is not always the

case. Since Braess (1968) seminal work, a large literature has developed around this seem-

ingly counterintuitive result. Large negative social externalities can arise from decentralized

privately bene�cial actions. Improving the connectedness of the network may further in-

crease incentives towards privately bene�cial but socially costly actions and further decrease

aggregate e¢ ciency. Figure 2(a) illustrates an example of a triple (C; 1; l) displaying Braess�

paradox. In Figure 2(b) by removing arrow (v1; v2) one obtains an optimal subgraph (M; 1; l)

with lower Nash equilibrium latency.22

We now discuss some results concerning total latency costs in optimal subnetworks. Let us

�rst notice that, given city structure (C;�!r ; l), increasing the tra¢ c rate through the optimal

subnetwork M to a higher level �!r 0 = (1 + 
)�!r > �!r produces an increase in congestion,

that is L(h) � L(�h), where h and �h are feasible Nash �ows for (M;�!r ; l) and (M;�!r 0; l)

respectively. This statement follows directly from Proposition 3. More importantly, even

allowing reoptimization of the subnetwork for the new triple (C;�!r 0; l) is not su¢ cient to

reduce total latency, as proven by the following proposition.

propositionor tra¢ c rates �!r and �!r 0 = (1 + 
)�!r with 
 > 0, let M and M 0 be the

optimal subgraphs for (C;�!r ; l) and (C;�!r 0; l) respectively. If h and h0 are feasible Nash

�ows for (M;�!r ; l) and (M 0;�!r 0; l) respectively and l satis�es strong monotonicity, then

functions, they prove that taxes are more powerful than arrows�removal. Empirically, arrows�removal and
access restrictions are more common than taxes as mechanisms of congestion regulation in urban areas.
22See Roughgarden (2006).
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L(h) � L(h0).

Proof. In Appendix.

This monotonicity result shows that if the tra¢ c rate �!r going through the triple (C;�!r ; l)

increases, then total latency L(h) in the optimal subnetwork has to increase. This theoretical

result is novel, but much of its relevance comes from the empirical implications we derive in

what follows.

Under general assumptions on graph and latency other properties of the optimal subgraph

remain elusive. For instance, even for k = 1 and with strictly convex latency functions, L(h)�s

convexity with respect to�!r is not generally given23. Notice further that there is no assurance

ofM 0 �M , i.e. optimal subgraphs will display a progressive shedding of edges as population

grows. As a counterexample let us double tra¢ c input to r = 2 in Figure 2(b). We can show

that M 0 = C is an optimal subgraph for (C; 2; l), while for r = 1 the optimal subgraph M

was obtained by removing edge (v1; v2). This implies M �M 0.

III. Empirical Mapping

We now operationalize the model and show what are its useful insights in interpreting

the mapping data.

A. City Structure: Assumptions

We begin by giving the empirical correspondences of the network C = (V;A) and the

optimal subnetwork M . Sites within a city can be represented by a set of points on a map.

This corresponds to the vertex set V of C. Arrows A in the directed graph indicate the

direction of �ow allowed from vertex to vertex (or from site to site).

Directions of �ow are endogenous within cities and we represent such restrictions through

subgraphM , the solution to problem (2). With regard toM , a planner is allowed to restrict

23Hall (1978) p.214 reports a counter-example for strictly convex latency functions.
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access to a subset of the vertex set V in order to minimize total latency. This matches quite

accurately the design of tra¢ c plans for urban automotive transit. In the rest of our analysis

we will focus on automotive tra¢ c for this reason and because a large share of movement

within a city is by ground transportation.

Our main operational assumption will be that planners intend to minimize latency as

a primary objective. Empirically, congestion mitigation commissions routinely implement

tra¢ c control plans restricting access to certain routes and allow tra¢ c �ows to self-route

through the remaining accessible edges of the graph to guarantee mobility over a given set

of routes fsi; tig i = 1; :::; k. We recognize, however, that city planners may also have other

goals in designing M : minimizing accidents, favoring some routes over others in the name

of city development or as the result of pork-barrel/NIMBY politics, etc. As long as these

secondary concerns do not completely trump tra¢ c control, our model should still display a

reasonable �t of the data.

City structure is described jointly by C and by the latency functions l.24 An arrow�s la-

tency is generally the result of historical design (think of the thick Medieval walls restricting

entry points to an Italian city center), but also of progressive reoptimization by transporta-

tion authorities. Certain roads are designed to carry a speci�c amount of �ow. In our

analysis we will consider latency functions l as given and control for historical and physical

constraints that may induce higher latency on speci�c edges. Notice, however, that while

we take latency functions l as exogenous, the �ows argument of the function (and hence the

latency) are endogenous in our setting.

Concerning travel demand elasticity, for every i, we are allowing perfect elasticity of

travel demand along each particular path �i in the network, combined with an inelastic travel

demand over the si� ti commodity. This assumption aligns with the FHWA statement that

�The magnitude of demand elasticity depends heavily on the scope and time frame over which

24We take the network structure as predetermined and operate by �nding optimal subnetworks. The
endogenization of network structures is a topic addressed by a growing literature within Economics. See for
instance Acemoglu, Bimpikis and Ozdaglar (2009) and Jackson (2005) for a survey. An empirical example
of the analysis of endogenous city structure is Burch�eld et al. (2006).
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travel demand is being measured. For example, a demand elasticity measured with respect

to a single facility includes trips diverted from other routes or time periods and would be

much higher than demand elasticities measured over a corridor or region.�25 It is important,

however, to assess how sensitive our theoretical results are to the relaxation of the commodity

i perfectly inelastic travel demand assumption. Appendix B presents a generalization of the

model to the case of elastic travel demand and discusses in detail how our main theoretical

implications are robust along this dimension.

Finally, a core innovation in our empirical mapping is to avoid the necessity of extensive

tra¢ c data information. Such micro information, albeit available for very limited areas, is

not systematically available for the very large cross section of cities we employ.26

B. Empirical Implementation

Tra¢ c �ows along the di¤erent arrows within a city can be mapped into equilibrium Nash

�ows. If a �ow f is feasible and Nash in (C;�!r ; l), then any two si � ti paths �Ci;1; �Ci;2 2 �Ci
which carry �ow must have the same latency `Ci . The same has to be true for latency `

M
i

in the optimal subgraph M with respect to the feasible Nash �ow h in (M;�!r ; l). Total

latencies must further satisfy L(h) =
P

i `
M
i ri �

P
i `
C
i ri = L(f).

For j = M;C and for each si � ti commute, we can decompose latency `ji = �ji�
j
i by

multiplying physical distance �ji and equilibrium unit travel time (inverse speed) �ji = 1=v
j
i

for a path in �ji . Ideally, one would like to measure aggregate latency costs L(h) =
P

i `
M
i pini

and all the components of this sum (distance, speed, share of �ow from each residency

location, location population at source). We show in the data section that some of this

information is available for a sample of US cities (but not all of it) and employ it to test

Proposition 4.

Without loss of generality let us order the paths in �Ci and �
M
i in terms of increasing

25See: http://www.fhwa.dot.gov/planning/itfaq.htm
26A necessary drawback of this approach is that, without micro �ow data, empirical testing whether tra¢ c

is actually at a Nash equilibrium is not feasible. We will specify explicitly our operational assumptions in
the subsequent empirical analysis.
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distance, so �ji =
�
�ji;1; �

j
i;2; :::

	
where �ji;1 � �

j
i;2 � ::: and so on. We do not require �

j
i;z to

carry �ow in equilibrium for z = 1; 2; :::, but if it does, then we write `ji = �
j
i;z�

j
i;z.

Let us de�ne �i the linear distance between si and ti. Since M is a subgraph of C,

by the triangle inequality it must be that �i � �Ci;1 � �Mi;1 for any i. This is because �i

is the euclidean distance between source and target, while �Ci;1 is the shortest-distance path

through the network when all edges are accessible, and �nally �Mi;1 is the shortest-distance

path through the subnetwork M .

Finally, let us notice that �Mi;1 may correspond to a path �
M
i;1 carrying no �ow in equilibrium

(for instance, because �Mi;1 latency even at zero �ow is extremely high). However, at least

one minimum-distance �ow-carrying path �Mi;X 2 �Mi exists, given that ri > 0 and �Mi 6= ?.

By de�nition �Mi;1 � �Mi;X , so for �Mi;X it must be that for any i:

(3) �i � �Ci;1 � �Mi;X :

Let �vi be the reference speed at zero �ow on �Mi;X , we also have
1
�vi
�Mi;X � �Mi;X�Mi;X for each i.27

The interesting point here is that �i, �
C
i;1, �

M
i;X have a direct empirical correspondence.

Given a fsi; tig address pair, automated mapping applications accessible over the Internet

(such as Google Maps, which we employ) output directions including �i as the euclidean

distance, �Ci;1 as the walking distance, and �
M
i;X as the driving distance. Google Maps further

supplies a reference travel time 1
�vi
�Mi;X based on speed limits. These are close empirical

matches of our theoretical quantities.28 An example for Midtown Manhattan is presented in

27�vi is sometimes referred to as free-�ow speed or zero-�ow speed in the literature.
28We choose maps.google.com out of available web mapping interfaces (such as MapQuest.com or

maps.yahoo.com) for its response speed. Concerning directions, the Google maps algorithm�s details are
proprietary. However, the algorithm is a variant of Dijkstra�s (1959) algorithm, the fastest algorithm to
solve weighted-graphs problems with non-negative edges (precisely the type of problems allowed within our
graph C = (V;A)). The algorithm starts from a source and computes the latency to all directly connected
vertices, where latencies are approximated by edge length (if the shortest route is considered) or by edge
length weighted by speed limit (if the fastest route is considered). The algorithm then moves onto the
following set of connected verteces, and so on and so forth, until the shortest path to the target is found.
Standard paths are stored in the Google Maps�cache to speed up computation.
Two caveats are in order here. First, while directions by car are operative in Google maps, walking

directions are beta (in the empirical section we have to discard some bad output due to this issue). Second,
Google maps currently does not allow for a shortest/fastest direction choice, but the output likely balances
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Figure 3.

It is feasible to sample a large set of possible commutes from city address books and collect

this information. Incidentally, as theoretically predicted, the data will con�rm inequality

(3), with only a very small number of bad exceptions due to heuristic approximations within

Google.29

We can now present our main empirical remarks.

Remark 1. An explicit test of Proposition 4 can be formulated as:

If M and M 0 are optimal subgraphs of problem (2) for triple (C;�!r ; l) and (C;�!r 0; l)

respectively, where r =
Pk

i=1 piwiN and r0 =
Pk

i=1 piwiN
0, and if N < N 0, then

kX
i=1

�
�Mi;X�

M
i;X

�
piwiN �

kX
i=1

�
�M

0

i;X0�M
0

i;X0

�
piwiN

0

(i.e. total latency increases).

Remark 2. Given the following four claims:

1. If N < N 0, per traveler latency increases

kX
i=1

�
�Mi;X�

M
i;X

�
piwi �

kX
i=1

�
�M

0

i;X0�M
0

i;X0

�
piwi;

2. If N < N 0, total delay increases

kX
i=1

�Mi;X

�
�Mi;X �

1

�vi

�
piwiN �

kX
i=1

�M
0

i;X0

�
�M

0

i;X0 �
1

�v0i

�
piwiN

0;

the two. We include more details on the interface in the Data Section. For our analysis we assume that if
Google Maps gives a path as the driving directions output, there is �ow on that path and it is the shortest
�ow-carrying path, �Mi;X . This matches the fact that Google does not output necessarily the shortest driving
path �Mi;1 but puts some weight on speed as well.
29See Data Section for details.
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3. If N < N 0, per traveler delay increases

kX
i=1

�Mi;X

�
�Mi;X �

1

�vi

�
piwi �

kX
i=1

�M
0

i;X0

�
�M

0

i;X0 �
1

�v0i

�
piwi;

4. If N < N 0, average reference latency increases

kX
i=1

�
�Mi;X

1

�vi

�
piwi �

kX
i=1

�
�M

0

i;X0
1

�v0i

�
piwi;

two su¢ cient conditions for Remark 1 and Proposition 4 to hold are: (a) Claim 2 and

claim 4 jointly hold; (b) Claim 3 and claim 4 jointly hold.

In Section 5 we validate empirically claims 2-4. If claims 2 and 4 hold jointly, Remark 1

must hold, hence verifying Proposition 4.30 If claims 3 and 4 hold jointly, claim 1 must also

hold31 and Proposition 4 will hold a fortiori.32

Testing Remark 1 o¤ers evidence in support of Proposition 4, our main theoretical impli-

cation, but does not o¤er evidence on whether increases in total latency originate exclusively

from slowing down of tra¢ c or from city plans M allowing only longer paths through their

edges (hence increasing average distance traveled) or both. As shown in the previous section

there is no assurance M 0 � M in general, so an open empirical question is whether:

Remark 3. City networks satisfy the following two claims:

1. If N < N 0, average distance traveled increases

kX
i=1

�
�Mi;X

�
piwi �

kX
i=1

�
�M

0

i;X0

�
piwi;

30If claim 2 holds then
Pk

i=1 �
M
i;X

�
�Mi;X � 1

�vi

�
piwiN �

Pk
i=1 �

M 0

i;X

�
�M

0

i;X � 1
�v0i

�
piwiN

0: It follows from

claim 4 that:Pk
i=1 �

M
i;X

�
�Mi;X � 1

�vi

�
piwiN �

Pk
i=1 �

M 0

i;X

�
�M

0

i;X � 1
�v0i

�
piwiN

0 �
Pk

i=1 �
M 0

i;X

�
�M

0

i;X

�
piwiN

0 �Pk
i=1 �

M
i;X

1
�vi
piwiN . Adding

Pk
i=1 �

M
i;X

1
�vi
piwiN to all elements of the inequality implies Remark 1.

31By adding claim 3 and claim 4.
32Notice however that Proposition 4 does not imply claims in Remark 2, nor under general assumptions

on the directed graph C and latency functions l such claims will necessarily hold.
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2. If N < N 0, average speed of transit decreases

kX
i=1

�
vMi;X

�
piwi �

kX
i=1

�
vM

0

i;X0

�
piwi;

where vMi;X = 1=�
M
i;X .

A �nal step in the empirical mapping is required. Our comparative statics with respect

to population N holds graph C constant. Empirically, C evolves over time within a city and

di¤ers across cities. Our approach is to hold speci�c �rst order statics of the directed graph C

constant, in particular characteristics a¤ecting the location of sites within the city (e.g. water

basins and streams, wetlands, steep-sloped terrain, coastal position, latitude, longitude,

elevation and variation in elevation over the city surface, etc.) and graph tortuosity.33 This

approach is admittedly rough, but to the best of our knowledge the only one implementable

for general comparison across city networks.

Let us de�ne the average path tortuosity for graph C and latency functions l:

(4) t(C; l) =
kX
i=1

�
�Ci;1 ��i

�
wi:

A low-t city is one where moving from origin to destination is on direct lines (think

of walking through downtown Chicago), as opposed to a high-t city where moving on a

O-D path is on winding lines (think of walking through downtown Siena). Tortuosity is

occasionally mathematically de�ned through an arc-chord ratio, which in our case would

deliver the measure T (C; l) =
Pk

i=1

�
�Ci;1=�i

�
wi. Tortuosity parsimoniously helps capturing

limitations in the availability of links within the network, and historical features of the city

structure.
33As explicitly stated in Section 5.A, in order to saturate for potential nonlinearities a fourth order poly-

nomial in tortuosity, as de�ned in (4), a fourth order polynomial in population density, and state �xed e¤ects
are also employed to condition on C.
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Analogously to (4), we can de�ne the average per path distortion an individual incurs

due to congestion for given triple (C;�!r ; l) and for M solving (2):

(5) d (C;�!r ; l) =
kX
i=1

�
�Mi;X � �Ci;1

�
wi:

When positive, (5) emphasizes how latency minimization induces excess circuitousness into

the subnetwork. It provides an intuitive measure of the degree to which paths have to be

more roundabout in presence of congestion relative to a theoretical benchmark where an

individual is able to freely travel through the network alone. Since such distortions precisely

obey the logic of the Braess�paradox, we refer to them as Braess�distortions. An analogous

mean ratio for transit distortions is D (C;�!r ; l) =
Pk

i=1

�
�Mi;X=�

C
i;1

�
wi.

Claim 1 of Remark 3, if veri�ed, implies:

Remark 4. If M and M 0 are optimal subgraphs of problem (2) for triple (C;�!r ; l) and

(C;�!r 0; l) respectively, where r =
Pk

i=1 piwiN and r0 =
Pk

i=1 piwiN
0 with N < N 0, thenPk

i=1

�
�Mi;X � �Ci;1

�
wi �

Pk
i=1

�
�M

0

i;X0 � �Ci;1
�
wi (i.e. average travel distortion increases).

A useful result in assessing the economic importance of Braess distortions is that excess

circuitousness in the subnetwork bounds from below the gains in terms of speed of transit

that must accrue due to the restrictions implemented by the planner, or more formally:

corollaryiven triple (C;�!r ; l) with optimal subnetworkM , for each si�ti the ratio between

driving and walking distance �Mi;X=�
C
i;1 is less or equal than v

M
i;X=v

C
i;1, the ratio between the

speed on the shortest driving path inM and the speed at which it would be possible to drive

on the shortest path in the unrestricted network C.

Proof. In Appendix.

If the average excess distortion measured in a city is
Pk

i=1

�
�Mi;X=�

C
i;1

�
wi = 1:1, this

corollary implies that tra¢ c moves on average at least 10 percent faster in the restricted
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network relative to what would emerge in equilibrium in the (counterfactual) unrestricted

network.

IV. Data

A. Latency Costs

From the 2009 Annual Urban Mobility Report published by the Texas Transportation

Institute (TTI), part of the Texas A&M University System, we collect data on city-level to-

tal delay
Pk

i=1 �
M
i;X

�
�Mi;X � 1

�vi

�
piwiN , average delay per traveler

Pk
i=1 �

M
i;X

�
�Mi;X � 1

�vi

�
piwi,

and average tra¢ c speed
Pk

i=1

�
vMi;X

�
piwi measures. Unfortunately, total latency is not

reported by TTI (2009a). The Annual Urban Mobility Report assesses time delays and

roadway congestion costs data for 90 large urban areas in the United States.34 Measures of

urban roadway congestion are generated from raw data on urban arterial and freeway tra¢ c

supplied through the Highway Performance Monitoring System from the Federal Highway

Administration. To the best of our knowledge, TTI�s Annual Urban Mobility Report is

among the most comprehensive and complete sources of congestion costs estimates available

for any country and the most comprehensive in terms of road miles covered for US cities.

For cross-validation purposes and robustness to employing tra¢ c data obtained from al-

ternative methodologies, we also collect congestion rankings from the INRIX National Tra¢ c

Scoreboard. INRIX, one of the country�s leading tra¢ c and navigation services company,

gathers and analyses raw data originated from its proprietary Smart Driver Network, includ-

ing 1:6 million GPS-equipped probe vehicles (including taxis, shuttle vans, service delivery

trucks, and consumer vehicles) generating speed, direction, and location information for the

largest 100 metropolitan areas in the United States.35

34See http://mobility.tamu.edu/ums/congestion_data/. The Annual Mobility Report includes estimates
of congestion costs for an aggregate of 439 urban areas. TTI however collects detailed data only on the
original 90 areas.
The remaining 349 areas are rolled into 1 aggregate, in essence treating them as a single large urban area

for analysis purposes and no disaggregated data exist. We thank David Schrank at TTI for clarifying this
issue.
35See http://www.inrix.com/pressrelease.asp?ID=94
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Table 1 reports the top ten metropolitan areas for congestion costs in both samples. The

TTI and INRIX samples refer to tra¢ c conditions in the most recent period available (2007

and 2009, respectively), for maximal comparability between congestion costs and the corre-

sponding tra¢ c path distortions generated by the (continuously updated) Internet mapping

applications described below.

B. Braess�Distortions and Tortuosity

The process of measuring tra¢ c path distortions within the city network C is a crucial

methodological step in our analysis. Given the relative novelty of our approach we feel that

extra scrutiny is necessary. We do not limit ourselves to the analysis of US urban areas for

which TTI measures are available, but we extend the sample both cross-sectionally within

the United States and cross-country, focusing on Italian cities, an arguably di¤erent sample

in terms of urban structure and local administration organization.

Concerning US cities, we consider the top 500 most populous census designated places

(CDP). These data are available from the US Census Bureau36, which describes CDPs as

�delineated to provide data for settled concentrations of population that are identi�able

by name but are not legally incorporated under the laws of the state in which they are

located.�37

For the Italian city sampling we employ the cities considered in Guiso, Sapienza and

Zingales (2008), a large cross-sectional study of Italian municipalities. The data includes

INRIX coverage is more limited relative to TTI, as only mainline lanes of limited access highways are
included in the INRIX samples.
36The census places come from the 2000 vintage census data. Places in Puerto Rico are not considered in

constructing this list. U.S. Census Bureau. Places, cartographic boundary �les, descriptions and metadata
are available at http://www.census.gov/geo/www/cob/pl metadata.html#cdp 2005
37Census designated places mostly conform to commonly recognized political boundaries, but there are

several results of this worth mentioning. Minneapolis and St. Paul, Minnesota for example, are considered
as two distinct CDP�s, not a single metro area. In some cases (e.g. Sarasota and Bradenton, Florida)
cities which in tandem constitute a large metro-area, do not individually fall in the top 500 CDP�s and
so are not considered in this analysis. Some CDP�s do not exist in any commonly understood sense, like
Paradise, NV, which includes much of downtown Las Vegas, and exists for practical purposes, only as a
CDP. These limitations and additional heuristics in Google (described below) limit the full U.S. sample to
457 municipalities.
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692 Italian municipalities and all Italian main urban areas (Capoluoghi di Provincia).

a. Path Sampling Population is located at C�s sources si and travels towards C�s sinks

ti. In order to generate a sizeable set of random commutes within a city we generate fsi; tig

i = 1; :::; k̂ address pairs using a parallel algorithm for the US and Italian samples.

According to our model, source addresses can be randomly sampled, but sampling should

be weighted by source population. Consider collecting the addresses of all people called Smith

living in Chicago (or Rossi, living in Florence). Let us assume that people called Smith locate

at the sources s1; :::; sk with probability equal to the sources�subpopulation shares w1; :::; wk,

where wi = ni
N
and

P
iwi = 1. That is, we assume that a more populous suburb si has more

people called Smith than a less populous suburb si0 with wi0 < wi and that the share of

people named Smith is the same in both si and si0. Then, the distribution of people named

Smith is going to mimic the empirical distribution of source population s1; :::; sk and the

list of their addresses will provide a representative subset of source locations. Considering a

comprehensive list of last names further eliminates name-speci�c idiosyncrasies. We follow

this approach.38

The top 100 most common surnames in the US are derived using the available Census

(2009) totals for name frequency. The analog for the Italian version is based on data found

on the website cognomix.it. For each place, and each surname calculated above, addresses

are collected from phone directories.39 These addresses are then randomly paired in order

to create the endpoints for random routes through the city.

Notice that our path sampling approach focuses on residence-to-residence, not on residence-

38One caveat is in order. Our approach will not adequately capture city segregation by race in the case of
highly race-speci�c last names. In particular, for racial minorities living in concentrated areas, names will
not appear random across network sources s. This may be relevant for Asian or Hispanic or Middle-Eastern
enclaves. Such distortions should be quantitatively small, however, and con�ned to a minority of the city
population.
39We employed whitepages.com or paginebianche.it websites, for the U.S.or Italy respectively.
Census designated places that do not conform to normal political boundaries may not have entries in the

white pages. In the top 500 most populous CDPs there are three that fail to return results from the white
pages. They are: Arden-Arcade, CA; Paradise, NV and Sunrise Manor, NV.
In the Italian case it is possible to collect all data available, while from whitepages.com it is possible to

collect at most 100 addresses per name-place pair.
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to-business pairs, which are more representative of a typical work commute (but not nec-

essarily of all trips within the city). Since residence-to-residence paths can cross business

districts, these structural features will not be lost in our data. For instance, in a circular

city model with residences uniformly located on a circumference of radius � and a central

business district of radius �=2 (hence, covering 1=4 of the city disk) the probability of any

random commute passing through the business district is 1=3. 40

For each city C, k̂ is su¢ ciently large to guarantee asymptotic convergence of sam-

ple moments, such as d̂ (C;�!r ; l) =
Pk̂

i=1

�
�Mi;X � �Ci;1

�
wi, to population moments, such as

d (C;�!r ; l).41

Finally, since estimates of pi are not generally available, in computing per traveler city

averages based on Google we will proceed under the assumption of a constant share of

travelers out of each location (i.e. constant probabilities pi = p). This will allow to focus on

all the empirical implications of the model, albeit at a cost in terms of generality.

b. Google Maps Data Once random commutes fsi; tig are generated, the various travel

distances between the points must be calculated. This is accomplished using the Google

Maps API, through which we can programmatically query the Google Maps service and

determine the travel distance by car, �Mi;X , and by foot, �
C
i;1, for each commute. Figure

3 presents an example of a commute in Midtown Manhattan, where the driving distance

clearly exceeds the walking distance due to the speci�c restrictions of �ow along some of the

40The potential di¤erence in the distribution of business and residence locations can also be addressed
directly by picking target destinations from business directories. We experimented with spot sampling from
White and Yellow Pages in a subset of U.S. cities without any evidence of systematic distortions in the data.
We ultimately decided against the use of Yellow Pages because of the di¢ culty in systematically weighting
�employment per business phone number�, a necessary component in assessing the likelihood of a given
business commute (e.g. a large employer will be the target of more commutes than a small one, but they
may have the same number of phone numbers listed, as the large employer may only list its main number).
41In the Italian data the number of pairs generated is a truncated function of the population of the Italian

census place. For census places with populations in the lowest or highest quartile, 0:5 percent of the relevant
quartile boundary is used as the target number of pairs to generate. For census places with populations in
the interquartile interval, the number of pairs generated is equal to 0:5 percent of the actual population. In
the US sample, 0:5 percent of the population of the 75th percentile city is used for all cities where enough
addresses are available. This results in k̂ = 622 pairs for each US city, unless the number of addresses
collected is less than this total.
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graph�s arrows. We also collected the latitude and longitude of the points in question, which

allows us to calculate the euclidean distance �i, between the points as well.42 This process

relies on the ability of Google to translate the given addresses into latitude and longitude

coordinates via a process called geocoding.43

In this project, each pair of points required two requests to the API, one to get the

distance based on driving directions, and one to get the distance based on walking directions.

From these requests, the travel distance, latitude and longitude, and the accuracy of the

location for both points were parsed from the JSON response and stored in a new data set.

Aggregate measures of these values, calculated for each census place, constitute the �nal

output of the procedure. The following items are constructed for each census place: 1. The

mean value of driving distance traveled; 2. The mean travel duration at reference speed; 3.

The mean value of the di¤erence between driving and walking distances d (C;�!r ; l); 4. The

mean value of the di¤erence between walking and euclidean distances t(C; l); 5. The mean

value of the ratio of walking to euclidean distances D (C;�!r ; l); and 6. The mean value of

the ratio of driving to walking distances T (C; l). For robustness checks we constructed all

the corresponding medians as well.

Some summary information about the data collection per city and its outcomes are

presented in Table 2. Much more data was collected for the US case than for the Italian case

when employing googlemaps.com. Reasons for di¤erences in the number of pairs attempted

and the number realized are: 1. Failure to properly geocode the address with high enough

accuracy. The Google Maps API returns a code indicating the accuracy of the mapping, we

accept values whose accuracy is indicated to be street-level or higher. 2. The Google Maps

API returns a code indicating failure to generate directions for the given points. Naturally,

such points have nothing to contribute to our analysis. 3. Paired addresses map to the same

42The euclidean distance is calculated using the Haversine Formula, which is a formula for calculating
shortest distances on a spherical approximation of the earth. It does not take into account changes in
elevation.
43The Google Maps API is fully described in that service�s documentation at google.com, and those

interested in the details of using the service are advised to look there.
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location, resulting in zero distance for all measures. Such results are dropped.

As Table 2 also shows, the rate of failures in the Italian data is about three times that

of the US data. This is likely due to the relative di¢ culty of geocoding Italian addresses, to

the small size of some of the Italian cities in our sample, and poorer mapping information

for Italian cities.

Table 3 presents the summary statistics for both the TTI US sample and the full US

city sample. Units for distances are meters. On average the typical sampled path is 14:5 km

in driving distance in the TTI sample and 10:2 km in linear distance, reasonable commute

lengths. Delays�units are measured in annual excess hours, while travel duration at reference

speed (approximated speed limits) are reported in seconds. Tra¢ c congestion on average

produces 31 hours of delay per year per traveler (including cost of time and fuel the TTI

economic losses are substantial, as evident in the congestion cost estimates reported in the

Table). The average time duration of the typical commute at reference speed is about 16:5

minutes (990 seconds). This seems a reasonably representative �gure if compared with the

US Census 2009 American Community Survey average daily time to work of 25:1 minutes

(computed at actual speed). Finally, notice that both driving/walking and walking/linear

distance ratios are on average larger than 1, as required by (3).

V. Empirical Results

A. Remark 1: The Evidence

Lacking data on total latency, it is not feasible to test the main implication of the model

(Proposition 4) directly. In this section we follow an indirect approach.

We begin by showing that larger city populations N are positively correlated with longer

total delays (Remark 2, claim 2), longer delays per traveler (Remark 2, claim 3), higher

average reference travel durations (Remark 2, claim 4), longer average distance traveled

(Remark 3, claim 1), and lower average speed (Remark 3, claim 2). These �ve claims are

directly testable using either TTI data or Google Maps data. We present both uncondi-
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tional and conditional scatterplots in Figure 4 to Figure 8. The set of controls for the

conditional regressions in the right panels includes: state �xed e¤ects (hence elasticities are

estimated employing within-state variation only), a fourth order polynomial in tortuosity

t(C; l), a fourth order polynomial in population density (a typical control for city structure),

a coastal city dummy, latitude, longitude, km2 of lakes/swamps/ocean, km of coast, km of

rivers/streams, mean elevation, standard deviation of elevation, mean terrain slope, standard

deviation of slope, percent area suitable for development44.

In all reported regressions we cluster our standard errors at the state level. All variables

are expressed in natural logarithms, to reduce the incidence of outliers.

Figures 4-8 make clear that claims 2-5 of Remark 2 and 1-2 of Remark 3 are all strongly

supported by the data. All regressions, unconditional and conditional, are statistically signif-

icant at standard con�dence levels. The unconditional elasticity of total delay to population

is estimated at 1:10. The unconditional elasticity of delay per traveler to population is

estimated at 0:34. The unconditional elasticity of travel duration at reference speed to pop-

ulation is estimated at 0:13. The unconditional elasticity of distance traveled to population

is estimated at 0:22. The unconditional elasticity of travel speed to population is estimated

at �0:08.

Figure 9 also reports scatterplots comparing TTI to the Couture, Duranton, and Turner

(CDT, 2012) and INRIX congestion indexes and population, a reduced-form result without

a direct link to our model, but reassuring of TTI data�s reliability. In particular, the CDT

inverse travel speed index is reassuring, as based on observed travel speeds by a sample

of commercial and privately owned vehicles from the National Household Transportation

Survey.

In order to test Remark 1 (i.e. Proposition 4) and claim 1 of Remark 2 we apply a

conservative multiple hypothesis testing approach based on the Bonferroni inequality (Savin,

1984). This is necessary as we are jointly testing multiple one-sided claims. For each null

44See Appendix C for variable de�nition and data sources.
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hypothesis (i.e. that population elasticities of total delay, per traveler delay, and reference

travel duration are nonpositive), the Bonferroni correction requires the respective p-values to

fall below �=q, where � is the con�dence level and q = 3 is the number of multiple hypotheses

jointly considered (Remark 2, claims 2-4). We report the relevant one-sided hypothesis �2

test statistics and their p-values (both unconditional and conditional) in Table 4. We reject

each null hypothesis substantially below the :0033 (= :01=3) con�dence threshold with the

sole exception of the unconditional �2 statistic for reference travel duration, which has a

p-value of 0:0077. According to the Bonferroni inequality we reject the null that Proposition

4 fails at 5 percent con�dence level for the unconditional model and at 1 percent for the

conditional model. Claim 1 of Remark 2 is supported at equal levels of statistical signi�cance.

B. Remark 4: Braess�Distortions

Our model is predicated upon the assumption that city planners may restrict access to

network edges with the objective of minimizing total latency at Nash equilibrium. Under

general assumptions the model is silent on how increases in tra¢ c rates a¤ect the optimalM

(a task requiring far more stringent assumptions on the triple (C;�!r ; l)). However, we are

able to present direct empirical evidence on how population correlates with the average path

distortion d (C;�!r ; l) that an individual incurs due to congestion and show that Remark 4

holds in the data.

Figure 10 reports that larger city populations N are positively correlated with larger

Braess�distortions in the TTI sample, both conditionally and unconditionally. The uncon-

ditional elasticity of travel distortion to population is estimated at 0:37. Relative to Figure

7, where the estimated elasticity was 0:22, this result is quantitatively larger, re�ecting the

improvement in holding city structure C constant across cities when focusing on deviations

relative to the shortest path available �Ci;1.

Figure 11 shows that the positive relationship between Braess�distortions and city size

holds in the full US sample as well, and not just in the more limited TTI sample. Figure
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12 presents kernel densities estimated for the overall sample of US cities. For completeness

we report here both average excess driving to walking distance d (C;�!r ; l) and average ratio

D (C;�!r ; l). For both measures Figure 12 highlights a relatively high dispersion in terms of

transit distortions across cities and heavily right-skewed distributions.

Moving to the Italian sample, Figure 13 again reports a positive and robust correlation

between path distortions and city population. Standard errors in all regressions are clustered

at the provincial level for the Italian sample.

The unconditional population elasticities range between 0:63 for the full US sample and

0:39 for the Italian sample, quantitatively comparable estimates. The quantitative implica-

tion in the most comprehensive US sample is that an extra 10 percent population moving

through the same city network is associated with an increase in the distance one has to

travel by car of an additional 6:3 percent. Going from A to B, where A and B are located

on average 6:7 km from one another, where the measure of distance is the euclidean distance

and where initial travel distortion is 1:78 km, requires 112 (= 1; 780 � 0:063) extra meters of

travel when the city population moving through the network increases by 10 percent.

To the best of our knowledge this represents a novel fact in the analysis of urban struc-

ture and one that points to a pervasive presence of Braess�distortions in more populated

networks. In addition, this fact has an interesting correspondence to a related literature

on the theoretical pervasiveness of the Braess�paradox in networks (Frank, 1981; Fisk and

Pallottino, 1981; Valiant and Roughgarden, 2010; Chung and Young, 2010).

C. Binding the Gains from Braess�Distortions in Cities

It is important to assess howmuch one can possibly gain from imposing Braess�distortions

in cities. For a �ow f feasible and Nash in (C;�!r ; l), Roughgarden and Tardos (2002) de�ne

the Braess�ratio as:

(6) �(C;�!r ; l) = max
~M�C

"
k

min
i=1

`Ci

`
~M
i

#
.
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Intuitively, the Braess�ratio indicates the largest congestion amelioration that can be ob-

tained by excluding some edges of graph C. A sizeable literature has developed around

placing theoretical bounds around Braess�ratios, including Lin, Roughgarden, Tardos, and

Walkover (2009) among the others. In this section we take a complementary route and

present empirical bounds for the value of Braess�ratio in cities.

It is unfeasible to focus on all possible tra¢ c plans for all cities in our sample as required

by (6), so we focus on the implemented M , modifying the de�nition of Braess ratio to:

(7) � (C;�!r ; l) =
k

min
i=1

`Ci
`Mi
.

Notice that when k = 1 then � (C;�!r ; l) = L(f)=L(h). Re-expressing total latencies in terms

of average distance and speed, we can bound the Braess�ratio:

� (C;�!r ; l) =
�Ci;X�

C
i;X

�Mi;X�
M
i;X

�
�Ci;X�

C
i;X

�Mi;X
1
�vi

�
�Ci;1�

C
i;1

�Mi;X
1
�vi

�
�Ci;1

1
v0i

�Mi;X
1
�vi

,

where i is the path satisfying (7) and v0i the slowest speed on the shortest path in �
C
i .

Google Maps allows to operationalize the upper bound by providing measures of �Ci;1

and �Mi;X . TTI calibrates a set of plausible approximations for �v=v
0 in congested arterial

and freeway tra¢ c at heavy (�v=v0 = 1:21), severe (�v=v0 = 1:33), and extreme conditions

(�v=v0 = 1:51)45. These calibrations are necessary, as we do not observe the counterfactual

speed in the unrestricted network C. Assuming �v=v0 on all arrows, we could potentially

focus on the sampled
k̂

min
i=1

h
�v
v0

�Ci;1
�Mi;X

i
for each city for consistency with Roughgarden and Tardos

(2002). However, a statistical approach more robust to idiosyncratic bad searches is to focus

on sample means of walk-drive ratios �v
v0

Pk
i=1

�
�Ci;1=�

M
i;X

�
wi.

For the US sample,
Pk

i=1

�
�Ci;1=�

M
i;X

�
wi = :92 implies an upper bound on the Braess�

ratio for that city of 1:11 in heavy conditions, or a gain of at most 11 percent from imposing

45Exhibit A-6. Daily Tra¢ c Volume per Lane and Speed Estimating Used in Delay Calculation in TTI
(2009b).
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Braess�distortions. Similarly we assess a 22 percent gain in severe conditions, and 39 percent

gain in extreme counterfactual conditions.

According to the Federal Highway Administration 2010 Tra¢ c Volume Trends, in the US

3; 000 billion miles were driven annually in 2009, about 60% of which were driven in urban

areas. This implies 1800 billion urban miles. Assuming a (conservatively high) average speed

of 40 miles per hour (coinciding with the TTI highway and freeway estimated average speed),

a value of time of $16:01 per person-hour and $105:67 per truck-hour as per TTI (2009a),

and assuming 95% of urban hours are driven by car, this implies a total urban latency of

$922 billion. It follows an upper bound on the economic value of Braess�distortions of $103

billion assuming heavy conditions in the counterfactual network, of $204 billion assuming

severe conditions, and of $360 billion in the extreme case.

While this exercise is not useful in assessing potentially informative lower bounds on the

value of such distortions (impossible to obtain without further assumptions on the counter-

factual equilibrium at C), it emphasizes under reasonable calibrations the potential of large

gains stemming from Braess�distortions.

VI. Conclusions

This paper o¤ers a contribution to the analysis of congestion costs in cities. We present

a theoretical model of congestion costs and endogenous tra¢ c distortions that allows a

straightforward mapping into empirically measurable quantities for a large sample of United

States and Italian cities.

We make use of widely available Internet mapping applications, verify the general predic-

tions of our model in the data, and further estimate positive and large population elasticities

of tra¢ c distortions in cities. We show that our results hold tightly across samples of large

and small cities within the United States and within a large sample of Italian cities. This

ultimately provides a novel set of cross-city stylized facts useful in the analysis of congestion

costs. We further interpret these �ndings as pointing in the direction of a large role for
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Braess�paradox in more populated city networks. From a methodological standpoint, our

empirical path distortion and path tortuosity measures for cities can be considered useful

summary statistics of network structures, possibly of use to geography and transportation

economists.

Finally, one can further envision settings where network structure a¤ects the matching,

search, and interaction of individuals within the urban community. This is a relatively

di¢ cult problem to tackle quantitatively in Economics and in Sociology, but one for which

we o¤er a methodological addition. This suggests potential applications of our city network

measures, ranging from the analysis of social and cultural capital accumulation within cities

(e.g. Are cities with more di¢ cult/distorted city networks characterized by lower or higher

levels of social capital?) to the study of within-city location decisions of businesses.
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VII. Online Appendix A: Proofs

Proof of Proposition 1. Suppose f �0 is the feasible minimum-latency �ow in the triple (C; (1 + 
)�!r ; l).
Consider the �ow f 00 = 1

1+

f �0 constructed so all �ows f 00a on every arrow a 2 A are

scaled down by a factor 1
1+


relative to f �0a . Function la (:) is non-decreasing, so L (f
00) =P

a la (f
00
a ) f

00
a �

P
a la (f

�0
a ) f

�0
a = L (f

�0) :
Notice that �ow f 00 is feasible in the triple (C;�!r ; l). Hence, by de�nition of minimum

latency it follows L (f �) � L (f 00) : Hence, L (f �) � L (f �0).
This proves the proposition.

Proof of Proposition 3. Our objective is to prove L(f 0) � L(f) for any 
 > 0. Let us restate
L(f 0) =

Pk
i=1 `

0
ir
0
i =

Pk
i=1 `

0
i(1 + 
)ri and L(f) =

Pk
i=1 `iri. Consider that:

L(f 0)� L(f) =
kX
i=1

`
0

i(1 + 
)ri �
kX
i=1

`iri

�
kX
i=1

�
`
0

i � `i
�
ri.(8)

Notice that for any 
 > 0 the expression
Pk

i=1

�
`
0
i � `i

�
ri is nonnegative if

Pk
i=1

�
`
0
i � `i

�

ri

is nonnegative.
By following the approach of Dafermos and Nagurney (1984, Theorem 4.2) we are now

going to show that:

kX
i=1

�
`
0

i � `i
�

ri

=
kX
i=1

X
�2�Ci

�
`
0

i � `i
�
(f 0� � f�) � 0.

For each origin-destination pair i = 1; :::; k let us de�ne the following partition of the path
set �Ci = �

C1
i [�C12i [�C2i based on which paths are carrying �ow in which equilibrium, so

that:

�C1i =
�
� 2 �Ci jf 0� = 0; f� > 0

	
;

�C12i =
�
� 2 �Ci jf 0� > 0; f� > 0

	
;

�C1i =
�
� 2 �Ci jf 0� > 0; f� = 0

	
:
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Consider now that this allows us to write:

kX
i=1

X
�2�Ci

(l�(f
0)� l�(f)) (f 0� � f�)

=
kX
i=1

24 X
�2�C12i

�
`
0

i � `i
�
(f 0� � f�)

+
X
�2�C1i

(l�(f
0)� `i) (f 0� � f�)

+
X
�2�C2i

(`0i � l�(f)) (f 0� � f�)

35 .(9)

At Nash equilibrium it must hold that:

(10)
X
�2�C1i

(l�(f
0)� `i) (f 0� � f�) �

X
�2�C1i

(`0i � `i) (f 0� � f�);

given that for every � 2 �C1i f 0� = 0 and l�(f
0) � `0i.

Symmetrically, it must also hold:

(11)
X
�2�C2i

(`0i � l�(f)) (f 0� � f�) �
X
�2�C2i

(`0i � `i) (f 0� � f�);

given that for every � 2 �C2i f� = 0 and l�(f) � `i.
From (9), (10), and (11) it follows that:

kX
i=1

X
�2�Ci

(l�(f
0)� l�(f)) (f 0� � f�) �

kX
i=1

X
�2�Ci

�
`
0

i � `i
�
(f 0� � f�).

Note that la(x) is a non-decreasing function by assumption, therefore l�(f) =
P

a2� la (fa)
is non-decreasing. In addition, la(x) is non-negative, so l�(f) is non-negative. Hence, if
f 0� � f� < 0 it must be l�(f 0) � l�(f) < 0 and if f 0� � f� > 0 it must be l�(f 0) � l�(f) > 0.
This implies:

0 �
kX
i=1

X
�2�Ci

(l�(f
0)� l�(f)) (f 0� � f�) �

kX
i=1

X
�2�Ci

�
`
0

i � `i
�
(f 0� � f�) =

kX
i=1

�
`
0

i � `i
�

ri

By (8) and the fact that 
 > 0, this proves the proposition.

Proof of Proposition 4. De�ne ĥ the feasible Nash �ow for (M 0;�!r ; l). By optimality of M
with respect to the triple (C;�!r ; l), it follows that L(h) � L(ĥ).
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By the monotonicity result in Proposition 3, it must follow that for the two triples
(M 0;�!r ; l) and (M 0;�!r 0; l) the inequality L(ĥ) � L(h0) holds.
It follows that:

L(h) � L(ĥ) � L(h0).
This proves the proposition.

Proof of Corollary 1. By de�nition `Mi = �Mi;X�
M
i;X . De�ne ~� = `Mi =�

C
i;1. Hence, ~�=�

M
i;X =

�Mi;X=�
C
i;1.

By optimality of M it follows ~� � `Ci =�Ci;1 � �Ci;1, where the last inequality holds strictly
if �Ci;1 does not carry �ow in equilibrium.
Then, �Mi;X=�

C
i;1 � �Ci;1=�Mi;X or, in terms of speed gains, �Mi;X=�Ci;1 � vMi;X=vCi;1.

This proves the corollary.
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VIII. Online Appendix B: Endogenous Travel Demand.

In this appendix we provide a generalization of our model to endogenous travel demand.
Let us consider city C where tra¢ c operates in two di¤erent time periods: peak and o¤-
peak. Let us maintain our assumption on latency functions l and de�ne the tra¢ c rate on a
source-target si � ti at peak time as ri = pini and the tra¢ c rate on a source-target si � ti
at o¤-peak time as ~ri = (1� pi)ni. We allow pi, the per period share of ni that undertakes
trip si � ti at peak time, to be endogenously determined. That is, everybody living at si
has to reach ti, but can decide when. Following Arnott, de Palma, and Lindsey (1993) we
assume individuals obtain a disutility ui � 0 from taking the trip in o¤-peak time, with ui
constant within the source population (but not necessarily across sources).
Since our focus is on the elasticity of travel demand, it is sensible to focus on a case

where individual decision making matters, that is the Nash �ow of the network (as opposed
to the optimal directed �ow, for instance) for the triple (C;�!n ; l), where we indicate �!n the
vector [n1; n2; :::; nk]. Our previous notation with inelastic travel demand was (C;

�!r ; l) and
the di¤erent notation is driven by the fact that now input tra¢ c rates are endogenous and
not given.
For commodity si � ti, de�ne the Nash delay `i (ri), for given peak input tra¢ c rate ri.

A resident of si travels at peak time if �`i (ri) � �ui � ~̀
i (ni � ri), and travels o¤-peak

otherwise. Indi¤erence between on-peak and o¤-peak latency ~̀i implies:

(12) �`i (pini) = �~̀i ((1� pi)ni)� ui:

Hall (1978) shows any increment of input tra¢ c rate ri produces an increase in `i, so
path latency is monotonic increasing in input tra¢ c rates, and the function is continuous by
assumption. The same has to hold for a Nash equilibrium o¤-peak latency ~̀i. Monotonic
and increasing path latencies imply there is a unique intersection p�i that solves (12). Fur-
thermore, it must also be true that p�i � 1=2, that is, there is more tra¢ c at peak than o¤
peak, as people will trade o¤ increased congestion with higher utility of traveling at peak
times.
(12) pins down the selection between peak and o¤-peak travel uniquely. Hence, input

tra¢ c rates can be taken as exogenous when solving for a Nash equilibrium within the
network at peak and o¤ peak. This implies that there exists a unique Nash equilibrium for
(C;�!n ; l), since, given input peak tra¢ c rate vector�!r , there exists a unique Nash equilibrium
for the peak triple (C;�!r ; l) (applying Proposition 2) and, given input o¤-peak tra¢ c rate
vector

�!
~r , there exists a unique Nash equilibrium for the o¤-peak triple

�
C;
�!
~r ; l
�
(again,

applying Proposition 2).
Given the uniqueness of the Nash equilibrium, we can further explore some interesting

comparative statics. In the case of an increment of the population at the source, ni, peak
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input tra¢ c rate ri = p�i (ni) � ni will respond directly proportionally because:

@ri
@ni

= pi +
@pi (ni)

@ni
ni =

= pi �
@(`i(pini)�~̀i((1�pi)ni))

@ni

@(`i(pini)�~̀i((1�pi)ni))
@pi

ni

= pi �
pi`

0
i (pini)� (1� pi) ~̀0i ((1� pi)ni)
`0i (pini) +

~̀0
i ((1� pi)ni)

� pi � (1� pi)
`0i (pini)� ~̀0i ((1� pi)ni)
`0i (pini) +

~̀0
i ((1� pi)ni)

� pi � (1� pi)
� 0

where we make use of the Implicit Function Theorem and the last inequality follows from
p�i � 1=2. So, when the population at the source increases, input tra¢ c at peak will increase.
This result further implies that o¤-peak input tra¢ c ~ri will increase a fortiori, given that,
not only population at the source increases, but also people will reallocate from peak to o¤-
peak travel. This further implies that the intuition of total latency at Nash being increasing
in city population (Proposition 3) will be satis�ed in this setting, both in peak and o¤-
peak times. One can verify that all assumptions of Proposition 3 hold within the network
both at peak and o¤ peak for given input tra¢ c rates. De�ne total cost in (C;�!n ; l) as
�(C;�!n ; l) =

P
i `iri +

P
i

�
~̀
i + ui

�
(ni � ri). The argument above proves:

propositionf population N
0
> N such that n0i = (1 + 
)ni for any commodity i and


 > 0, then �(C;�!n ; l) � �(C;
�!
n0 ; l).

A �nal issue in this extension is the de�nition of the optimal network design problem.
City planners aim at �nding restrictions on accessible vertices that allow reductions in latency
costs, but now will need to weigh o¤-peak versus peak delays. More formally, the problem
is to �nd the subnetwork M of C, over which agents sel�shly route themselves, displaying
the lowest latency at Nash equilibrium both o¤-peak and at peak. Notice that in this case
the city manager by picking a subnetwork M of C will be also implicitly picking an input
tra¢ c rate at peak and o¤ peak.

Condition 1. City planners impose a single tra¢ c plan at peak and o¤-peak, or for given
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quadruple (C;�!n ; l), the problem can be represented as the following network design program:

Min
~M � C

(X
i

`iri +
X
i

�
~̀
i + ui

�
(ni � ri)

)
s:t: �

~M
i 6= ?; 8i

h is a feasible Nash �ow for
�
~M;�!r ; l

�
so that for every � 2 � ~M

i l�(h) = `i

~h is a feasible Nash �ow for
�
~M;
�!
~r ; l
�
so that for every � 2 � ~M

i l�(~h) = ~̀i

Using (12) the problem becomes:

Min
~M � C

(X
i

�
~̀
i + ui

�
ni

)
(13)

s:t: �
~M
i 6= ?; 8i

h is a feasible Nash �ow for
�
~M;�!r ; l

�
so that for every � 2 � ~M

i l�(h) = `i

~h is a feasible Nash �ow for
�
~M;
�!
~r ; l
�
so that for every � 2 � ~M

i l�(~h) = ~̀i

The problem (13) for the city planner admits a solution. The city planner can pick any
subnetwork ~M , �nd the unique p�i for any commodity i, compute the total latency of the

Nash equilibrium of the o¤-peak network
�
~M;
�!
~r ; l
�
where input tra¢ c at each source si is

~ri = (1� p�i )ni, then pick the minimum latency ~M . Let us indicate with M a solution to
(13).
propositiononsider population N

0
> N such that n0i = (1 + 
)ni for any commodity i

and 
 > 0 and M and M 0 optimal subgraphs for (C;�!n ; l) and (C;�!n 0; l) respectively. Then
�(M;�!n ; l) � �(M 0;

�!
n0 ; l).

Proof. By optimality of M to problem (13) it follows that �(M;�!n ; l) � �(M 0;�!n ; l). By
Proposition 5, �(M 0;�!n ; l) � �(M 0;

�!
n0 ; l). Hence, �(M;�!n ; l) � �(M 0;

�!
n0 ; l).

This proves the proposition.

Proposition 6 mirrors closely Proposition 4 and it is helpful in underlying the robustness
of our main comparative statics for the analysis in the main text to the speci�cs of source-
target travel demand.
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IX. Online Appendix C: Geographic Controls.

i. Latitude: Latitude measured in degrees. Source: United States Geological Survey
(USGS) Earth Explorer
URL: http://edcsns17.cr.usgs.gov/NewEarthExplorer/
ii. Longitude: Longitude measured in degrees. Source: USGS Earth Explorer
The following variables were measured using Geographing Information Software tools

(ARCGIS), combined with Geospatial Modeling environment tools (Hawth�s tools).
iii. Lakes sqkm: Total lake area in sq. km. within 50km radius. Scale 1:2,000,000. Source:

USG.S/ National Atlas of the US URL: http://www.nationalatlas.gov/mld/hydrogm.html
vi. Swamps sqkm: Total swamps or marshes area in sq. km. within 50km radius. Scale

1:2,000,000. Source: USG.S./ National Atlas of the US
v. Ocean sqkm: Total ocean area in sq. km. within 50km radius. Scale 1:2,000,000.

Source: USG.S./ National Atlas of the US
vi. Coastal City: Dummy variable, takes value 1 if city is within 100km of the ocean

or the great lakes (De�nition taken from Saiz, Albert 2010 "The Geographic Determinants
of Housing Supply," The Quarterly Journal of Economics, MIT Press, vol. 125(3), pages
1253-1296, August). Scale 1:2,000,000. Source: USG.S./ National Atlas of the US
vii. Coast km: Total km of ocean coastline within 50km radius, low resolution. Source:

USG.S./ National Atlas of the US
viii. Riv Str km: Total km of rivers and streams within 50km radius. Only available for

the contiguous USA. High Resolution. Source: NOHRSC
ix. Mean Elevation: Mean elevation in meters within 50km radius at 30m/ 1arc second

resolution. Source: NASA�s Shuttle Radar Topography Mission for Continental USA and
Hawaii, Version 2, and Alaska�s StateWide Mapping Initiative for Alaska.
URL: http://www2.jpl.nasa.gov/srtm/
http://www.alaskamapped.org/
x. SD Elevation: Standard deviation of elevation in meters within 50km radius at 30m/1

arc second resolution. Source: NASA�s Shuttle Radar Topography Mission for Continental
USA and Hawaii, Version 2, and Alaska�s StateWide Mapping Initiative for Alaska.
xi. Mean Slope: Mean slope in percent rise within 50km radius at 30m/1arc second

resolution. Source: NASA�s Shuttle Radar Topography Mission for Continental USA and
Hawaii, Version 2, and Alaska�s StateWide Mapping Initiative for Alaska.
xii. SD Slope: Standard deviation slope in percent rise within 50km radius at 30m/1arc

second resolution. Source: NASA�s Shuttle Radar Topography Mission for Continental USA
and Hawaii, Version 2, and Alaska�s StateWide Mapping Initiative for Alaska.
xiii. Slope less than 15: Percent area within 50km radius with a slope of less than

15%, or area suitable for development. (De�nition taken from Saiz 2010). Source: NASA�s
Shuttle Radar Topography Mission for Continental USA and Hawaii, Version 2, and Alaska�s
StateWide Mapping Initiative for Alaska.
xiv. Density: persons per sq. mile. US Census Bureau.
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Figure 1 

This example is originally due to Fisk (1979) and slightly modified here. The graph below depicts the entire 
directed network. Consider the following three source-target commodities: (a, b) indicated with i= 1, (a, c) 
with i= 2, and (b, c) with i= k= 3. Latency functions are described in the graph.  Assume traffic inputs are: 
r1= 1, r2= 20, r3= 100. For commodity i= 1, 3 there is only one available path each, while for commodity 2 P2 
= {pac; pabc} where pac indicates path azc and pabc indicates azbzc. The Nash equilibrium solution requires 
finding how commodity 2 traffic self-routes through this network. This implies finding flows fac and fabc such 

that conditions r2=fac+fabc; {1= r1+fabc; {2= fac + 90 = fabc+ r1 + fabc + r3; {3= r3+fabc hold. This problem is 

solved for fac= 17 and fabc= 3 and equilibrium latencies {1= 4, {2= 107, {3= 103. Notice that total latency 

L(f)= Si {iri= 12,444. 

Assume now traffic inputs increase to: r1= 4, r2= 20.1, r3= 100.1. The Nash equilibrium flows are now fac= 18 

and fabc= 2 and {1= 6, {2= 108.1, {3= 102.1. Notice that now total latency drops to L(f)= Si {iri= 12,417. The 

intuition of this counterintuitive result is that by increasing congestion on edge azb Nash equilibrium 
redirects individuals travelling form a to c away from path pabc and onto the alternative path pac. This ends up 
ameliorating congestion on the bzc edge where the benefit is particularly large, as it ameliorates conditions 
for the large group r3~ 100 (b, c) commuters. 
 
 

 

 

 

 
 

Figure 2 

Graph (a) depicts the entire directed network. Traffic rate is 1. The minimum-latency flow directs 1/2 the 
traffic on path szv2zt and 1/2 on path szv1zt inducing a total latency of 3/2. The unique Nash flow routes 
through szv1zv2zt inducing a total latency of 2. In (b) the optimal subgraph is depicted. By removing the 
v1zv2 arrow, total latency in the unique Nash flow is now 3/2. 
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Figure 3 

 

Example of driving directions: AzB, New York City, NY.  Distance 2.2 km.  

Source: http://maps.google.com/ 

 

Example of walking directions: AzB, New York City, NY. Distance 1.8 km.  

Source: http://maps.google.com/ 

 



Table 1 

Texas Transportation Institute 2009 Urban 
Mobility Report 

Congestion Costs Ranking 2007 

Top Ten Most Congested 

INRIX Scorecard 

Congestion Rankings 2009 

Top Ten Most Congested 

Los Angeles-Long Beach-Santa Ana CA Los Angeles-Long Beach-Santa Ana CA 

New York-Newark NY-NJ-CT  New York-Northern New Jersey-Long Island NY-
NJ-PA 

Chicago IL-IN Chicago-Joliet-Naperville IL-IN-WI 

Atlanta GA Washington-Arlington-Alexandria DC-VA-MD-WV

Miami FL Dallas-Fort Worth-Arlington TX 

Dallas-Fort Worth-Arlington TX Houston-Sugar Land-Baytown TX 

Washington DC-VA-MD San Francisco-Oakland-Fremont CA 

San Francisco-Oakland CA Boston-Cambridge-Quincy MA-NH 

Houston TX Seattle-Tacoma-Bellevue WA 

Detroit MI Philadelphia-Camden-Wilmington PA-NJ-DE-MD

 

 

 

 

Table 2 

Country  Avg. # of Addresses Avg. # of Pairs Avg. # of Usable

 Sampled (per city) Attempted Results 

USA 5791 601 513 

Italy 860 106 70 

 

 



 

Table 3 

Variable Obs. Mean Std. Dev.

TTI U.S. Sample 

Population (1000) 98 569.38 968.58

Density (persons/sq mile) 98 2240.40 901.52

Total Delay (1000 hours/year) 98 47205.40 79213.57

Delay per Peak Traveler (hours/year) 98 31.21 15.13

Average Traffic Speed 98 39.79 4.07

Total Congestion Costs ($millions/year) 98 994.15 1690.53

Congestion Cost per Peak Traveler ($/year) 98 652.03 321.43

Average Traveled Distance (meters) 98 14557.06 7280.21

Average Latency at Reference Speed (seconds) 98 989.96 313.16

Average Travel Distortion (Drive-Walk) 98 1818.65 975.75

Average Path Tortuosity (Walk-Linear) 98 2442.15 1358.94

Average Travel Distortion (Drive/Walk) 98 1.14 0.04

Average Path Tortuosity (Walk/Linear) 98 1.27 0.07

Full U.S. Sample 

Population (1000) 457 213.52 486.90

Average Traveled Distance (meters) 457 9385.81 5568.38

Average Latency at Reference Speed (seconds) 457 749.35 275.60

Average Travel Distortion (Drive-Walk) 457 944.38 782.68

Average Path Tortuosity (Walk-Linear) 457 1780.73 982.04

Average Travel Distortion (Drive/Walk) 457 1.11 0.04

Average Path Tortuosity (Walk/Linear) 457 1.32 0.07



 

Table 4 

Multiple Hypothesis Model: 

Log Total Delay = a1+b1*logPop+e1 

Log Per Traveler Delay = a2+b2*logPop+e2 

Log Reference Duration = a3+b3*logPop+e3 

Unconditional 

c2 Test P-values 

Conditional on 
Controls 

c2 Test P-values 

Tests: Reference: (1) (2)

H0: b1§0                H1: b1>0 Remark 2, 
Claim 2 

<0.001 <0.001

H0: b2§0                H1: b2>0 Remark 2, 
Claim 3 

<0.001 <0.001

H0: b3§0                H1: b3>0 Remark 2, 
Claim 4 

<0.008 <0.001

 

H0: b1§0 Or b3§0   H1: b1>0 And b3>0 Remark 1 
[Jointly Remark 
2, Claims 2&4] 

<0.05 <0.01

H0: b2§0 Or b3§0   H1: b2>0 And b3>0 Remark 2, 
Claim 1   
[Jointly Remark 
2, Claims 3&4] 

<0.05 <0.01

Notes: Controls in column (2) include state fixed effects, a fourth order polynomial in tortuosity, a fourth 
order polynomial in population density, coastal city dummy, latitude, longitude, km² of lakes/swamps/ocean, 
km of coast, km of rivers/streams, mean elevation, standard deviation of elevation, mean terrain slope, 
standard deviation of slope, percent area suitable for development.  

Variance covariance matrix clustered at state level.  

Chi-squared p-values are based on a Bonferroni a/3 confidence level required for all tests.  
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 11 
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Figure 12 
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